Skip to main content

Advertisement

Log in

Enhanced inorganic carbon uptake by Chlorella sp. IMMTCC-2 under autotrophic conditions for lipid production and CO2 sequestration

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

To achieve sustainable production of biofuel from microalgae, a well-optimized and sustained biomass production is prerequisite. The major factor determining the higher productivity of algae is the availability and uptake of CO2 for biomass growth. In this study, an improved CO2 sequestration method leading to improved biomass yields has been investigated. The ability of OH ions in fixing dissolved CO2 in form of HCO 3 in algal growth medium was studied using a Chlorella sp. and scaled-up in a photobioreactor. It was observed that a critical concentration of 0.005 M OH is required for HCO 3 formation and utilization by algae. HCO 3 uptake was enhanced by 70.8% (in presence of 0.01 M NaOH) with a sixfold increase in growth rate compared with only CO2 system. In mineral carbon systems such as NaHCO3 and Na2CO3, increase in HCO 3 uptake was enhanced by 65.4% and 63.4%, respectively. The maximum rate of CO2 fixation of 6.6 mg L−1 h−1 was obtained with 0.01 M NaOH which was 1.5 times compared with mineral carbon sources. The biomass from scale-up experiment contained 16.3% lipid (by weight) of which 75% is unsaturated fatty acids (in total lipids). This supports the idea that fixing the dissolved CO2 in the form of bicarbonate using alkali helps in increased biomass productivity rather than CO2 itself, forms a precursor for biodiesel, and increases CO2 sequestration in a cyclic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aikins GP, Nadim A, Halwagi MME, Mahalec V (2010) Design and analysis of biodiesel production from algae grown through carbon sequestration. Clean Techn Environ Policy 12:239–254

    Article  Google Scholar 

  • Campbell PK, Beer T, Batten D (2011) Life cycle assessment of biodiesel production from microalgae in ponds. Bioresour Technol 102:50–56

    Article  PubMed  CAS  Google Scholar 

  • Demirbas MF (2011) Biofuels from algae for sustainable development. Appl Energ 88:3473–3480

    Article  CAS  Google Scholar 

  • Fulke AB, Mudliar SN, Yadav R, Shekh A, Srinivasan N, Ramanan R, Krishnamurthi K, Saravana Devi S, Chakrabarti T (2010) Bio-mitigation of CO2, calcite formation and simultaneous biodiesel precursors production using Chlorella sp. Bioresour Technol 101:8473–8476

    Article  PubMed  CAS  Google Scholar 

  • Gehl KA, Colman B, Sposato LM (1990) Mechanism of inorganic carbon uptake in Chlorella saccharophila: the lack of involvement of carbonic anhydrase. J Exp Bot 41:1385–1391

    Article  CAS  Google Scholar 

  • Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56:99–131

    Article  PubMed  CAS  Google Scholar 

  • Illman AM, Scragg AH, Shales SW (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb Tech 27:631–635

    Article  CAS  Google Scholar 

  • Kern DM (1960) The hydration of carbon dioxide. J Chem Educ 37:14–23

    Article  CAS  Google Scholar 

  • Khan SA, Rashmi HMZ, Prasad S, Banerjee UC (2009) Prospects of biodiesel production from microalgae in India. Renew Sust Energ Rev 13:2361–2372

    Article  CAS  Google Scholar 

  • Kimpel DL, Togasaki RK, Miyachi S (1983) Carbonic anhydrase in Chlamydomonas reinhardtii I localization. Plant Cell Physiol 24:255-259

    Google Scholar 

  • Mandal S, Mallick N (2009) Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl Microbiol Biotechnol 84:281–291

    Article  PubMed  CAS  Google Scholar 

  • Maroto JMR, Jimenez C, Aguilera J, Niell FX (2005) Air bubbling results microalgal cultivation in carbon loss during in bicarbonate-enriched media: experimental data and process modeling. Aquacult Eng 32:493–508

    Article  Google Scholar 

  • Miller AG, Colman B (1980a) Active transport and accumulation of bicarbonate by a unicellular cyanobacterium. J Bacteriol 143:1253–1259

    PubMed  CAS  Google Scholar 

  • Miller AG, Colman B (1980b) Evidence for HCO 3 transport by the blue-green alga (Cyanobacterium) Coccochloris peniocystis. Plant Physiol 65:397–402

    Article  PubMed  CAS  Google Scholar 

  • Mohan SV, Devi MP, Mohanakrishna G, Amarnath N, Babu ML, Sarma PN (2011) Potential of mixed microalgae to harness biodiesel from ecological water-bodies with simultaneous treatment. Bioresour Technol 102:1109–1117

    Article  PubMed  CAS  Google Scholar 

  • Nayak M, Jena J, Bhakta S et al (2011) Screening of fresh water microalgae from eastern region of India for sustainable biodiesel production. Int J Green Energ 8:1–15

    Article  Google Scholar 

  • Nedbal L, Cerveny J, Keren N, Kaplan A (2010) Experimental validation of a nonequilibrium model of CO2 fluxes between gas, liquid medium, and algae in a flat-panel photobioreactor. J Ind Microbiol Biot 37:1319–1326

    Article  CAS  Google Scholar 

  • Ota M, Kato Y, Watanabe H, Watanabe M, Sato Y, Smith RL Jr, Inomata H (2009) Effect of inorganic carbon on photoautotrophic growth of microalga Chlorococcum littorale. Biotechnol Progr 25:492–498

    Article  CAS  Google Scholar 

  • Packer M (2009) Algal capture of carbon dioxide; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy. Energ Policy 37:3428–3437

    Article  Google Scholar 

  • Richmond A, Boussiba S, Vonshak A, Kopel R (1993) A new tubular reactor for mass production of microalgae outdoors. J Appl Phycol 5:327–332

    Article  Google Scholar 

  • Rottig A, Wenning L, Broker D, Steinbuchel A (2010) Fatty acid alkyl esters: perspectives for production of alternative biofuels. Appl Microbiol Biotechnol 85:1713–1733

    Article  PubMed  Google Scholar 

  • Shiraiwa Y, Goyal A, Tolbert NE (1993) Alkalization of the medium by unicellular green algae during uptake of dissolved inorganic carbon. Plant Cell Physiol 34:649–657

    CAS  Google Scholar 

  • Singh A, Pant D, Korres NE, Nizami AS, Prasad S, Murphy JD (2010) Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: challenges and perspectives. Bioresour Technol 101:5003–5012

    Article  PubMed  CAS  Google Scholar 

  • Smith RG, Bidwell RGS (1989) Mechanism of photosynthetic carbon dioxide uptake by the red macroalga, Chondrus crispus. Plant Physiol 89:93–99

    Article  PubMed  CAS  Google Scholar 

  • Spalding MH (2008) Microalgal carbon-dioxide-concentrating mechanisms: Chlamydomonas inorganic carbon transporters. J Exp Bot 59:1463–1473

    Article  PubMed  CAS  Google Scholar 

  • Stein JR (ed) (1973) Handbook of phycological methods: culture methods and growth measurements. Cambridge University Press, Cambridge, p 448

    Google Scholar 

  • Stumm W, Morgan JJ (1981) Aquatic Chemistry, 2nd edn. Wiley, New York

    Google Scholar 

  • Wang B, Li Y, Wu N, Lan CQ (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79:707–718

    Article  PubMed  CAS  Google Scholar 

  • Yun YS, Lee SB, Park JM, Lee CI, Yang JW (1997) Carbon dioxide fixation by algal cultivation using wastewater nutrients. J Chem Technol Biot 69:451–455

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors like to thank the reviewers for their valuable suggestions in improving the manuscript. The authors extend their sincere thanks to Ms. C. Sarika and Dr. R.B.N. Prasad of Indian Institute of Chemical Technology (CSIR-IICT), for lipid profiling, Dr. D. Satapathi of Institute of Minerals and Materials Technology (CSIR-IMMT) for elemental and CV analysis, and to the Department of Biotechnology (DBT), Govt. of India, for the financial support. V. Aishvarya sincerely thanks Council of Scientific and Industrial Research (CSIR), India, for providing the Post Graduate Research fellowship (PGRPE) through Quick Hire Scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. B. Sukla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aishvarya, V., Pradhan, N., Nayak, R.R. et al. Enhanced inorganic carbon uptake by Chlorella sp. IMMTCC-2 under autotrophic conditions for lipid production and CO2 sequestration. J Appl Phycol 24, 1455–1463 (2012). https://doi.org/10.1007/s10811-012-9801-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-012-9801-9

Keywords

Navigation