Skip to main content

Advertisement

Log in

Cr6+ bioremediation efficiency of Oscillatoria laete-virens (Crouan & Crouan) Gomont and Oscillatoria trichoides Szafer: kinetics and equilibrium study

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Two species of cyanobacteria, Oscillatoria laete-virens (Crouan & Crouan) Gomont and Oscillatoria trichoides Szafer, were isolated from a polluted environment and studied for their Cr6+ removal efficiency from aqueous solutions. The parameters studied included the solution pH, contact time, initial concentration of Cr6+ and culture density. Living biomass is more efficient than dead biomass in Cr6+ removal. Removal by living biomass involves bioreduction and biosorption. Below pH 3.1, bioreduction is favored and biosorption is dominant at higher pH. The highest removal through biosorption for living biomass was achieved between pH 5 and 5.9 and for dead biomass at pH 2. The maximum removal was on the tenth day of exposure for both the species. Cr6+ removal increased from 0.2 to 0.4 g L−1 of culture biomass with a decrease with further increase in biomass. Increased Cr6+ concentration decreases growth of both the species over time. Both species tolerate a concentration as high as 30 mg L−1 Cr6+. There was no evidence of bioreduction in the case of dead biomass. Living biomass of O. laete-virens followed both Langmuir and Freundlich models with maximum sorptive capacity (q max) of 21.88 mg g−1. The results of dead biomass were well fitted only to Langmuir isotherm. O. trichoides living biomass did not follow either of the isotherms, but removed the metal to a maximum extent of 38.7mg g−1. The removal was better described by Freundlich isotherm in case of dead biomass. The pseudo-first-order model describes the kinetics better than the pseudo-second-order model in the case of living biomass. Participation of carboxylic, carbonyl, and amino groups in Cr6+ removal was confirmed by FTIR analysis. Both species seem to be promising biosorbents for Cr6+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aksu Z, Dönmez G (2006) Binary biosorption of cadmium (II) and nickel (II) onto dried Chlorella vulgaris: co-ion effect on monocomponent isotherm parameters. Process Biochem 41:860–868

    Article  CAS  Google Scholar 

  • Aksu Z, Tunc O (2005) Application of biosorption for penicillin G removal: comparison with activated carbon. Process Biochem 40:831–847

    Article  CAS  Google Scholar 

  • Aksu Z, Kustal T, Guin S, Haciosmanoglu N, Ghdminesad M (1991) Investigation of biosorption of Cu (II), Ni (II), and Cr (VI) ions to activated sludge bacteria. Environ Technol 12:915–921

    Article  CAS  Google Scholar 

  • Alcedo J, Wetterhahn KE (1990) Chromium toxicity and carcinogenesis. Int Rev Exp Path 31:85–107

    PubMed  CAS  Google Scholar 

  • Anjana K, Kaushik A, Kiran B, Nisha R (2007) Biosorption of Cr (VI) by immobilized biomass of two indigenous strains of cyanobacteria isolated from metal contaminated soil. J Hazard Mater 148:383–386

    Article  PubMed  CAS  Google Scholar 

  • Aoyama M, Tsuda M (2001) Removal of Cr6+ from aqueous solutions by larch bark. Wood Sci Technol 35:425–434

    Article  CAS  Google Scholar 

  • Aoyama M, Sugiyama T, Doi S, Cho NS, Kim HE (2005) Removal of hexavalent chromium from dilute aqueous solution by coniferous leaves. Holzforschung 53:365–368

    Google Scholar 

  • Arief VO, Trilestari K, Sunarso J, Indraswati N, Ismadji S (2008) Recent progress on biosorption of heavy metals from liquids using low cost biosorbents: characterization, biosorption parameters and mechanism studies. Clean 36:937–962

    CAS  Google Scholar 

  • Arslan P, Beltrame M, Tomasi A (1987) Intracellular chromium reduction. Biochim Biophys Acta 931:10–15

    Article  PubMed  CAS  Google Scholar 

  • Bala K, Rani N, Kaushik A (2004) Biosorption uptake of Cr(VI) by indigenous cyanobacterium Nostoc linckia. In: Reddy MS, Khanna S (eds) Biotechnological approaches for sustainable development. Allied Publishers, India, pp 205–212

    Google Scholar 

  • Cervantes C, Campos-Garcia J, Devars S, Gutiérrez-Corona F, Loza-Tavera H, Torres-Guzmán JC, Moreno-Sánchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347

    Article  PubMed  CAS  Google Scholar 

  • Chen CY, Durbin EG (1994) Effects of pH on the growth and carbon uptake of marine phytoplankton. Mar Ecol Prog Ser 109:83–94

    Article  Google Scholar 

  • Cheung KH, Gu JD (2007) Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. Int Biodeterior Biodegrad 59:8–15

    Article  CAS  Google Scholar 

  • Chu KH, Hashim MA (2004) Quantitative analysis of copper biosorption by a microalga Chlorella vulgaris. J Environ Sci Health A Environ Sci Eng 21:139–147

    CAS  Google Scholar 

  • Cimino G, Passerini A, Toscano G (2000) Removal of toxic cation and Cr(VI) from aqueous solution by hazelnut shell. Water Res 34:2955–62

    Article  CAS  Google Scholar 

  • Clesceri LS, Greenberg AE, Eaton AD (1998) Standard methods for the examination of water and waste water 20th ed. American Public Health Association. American Water Works Association and Water Environment Federation Washington, pp. 366–368.

  • Crist RH, Oberholser K, Shank N, Nguyen M (1981) Nature of bonding between metallic ions and algal cell walls. Environ Sci Technol 15:1212–1217

    Article  CAS  Google Scholar 

  • Cui H, Fu M, Yu S, Wang MK (2011) Reduction and removal of Cr(VI) from aqueous solutions using modified byproducts of beer production. J Hazard Mater 186:1625–1631

    Article  PubMed  CAS  Google Scholar 

  • De Philippis R, Vincenzini M (1998) Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiol Rev 22:151–175

    Article  Google Scholar 

  • Desikachary TV (1959) Cyanophyta. Indian Council of Agricultural Research, New Delhi

    Google Scholar 

  • Dönmez G, Aksu Z (2002) Removal of chromium (VI) from saline wastewaters by Dunaliella species. Process Biochem 38:751–762

    Article  Google Scholar 

  • Dreyfuss J (1964) Characterization of a sulphate and thiosulphate transporting systems in Salmonella typhimurium. J Biol Chem 239:2292–2297

    PubMed  CAS  Google Scholar 

  • Dubinsky Z, Rotem J (1974) Relations between algal populations and the pH of their media. Oecologia 16:53–60

    Article  Google Scholar 

  • Freundlich H (1907) Ueber die Adsorption in Loesungen Z. Physic Chem 57:385–470

    CAS  Google Scholar 

  • Gabr RM, Gad-Elrab SMF, Abskharon RNN, Hassan SHA, Shoreit AAM (2009) Biosorption of hexavalent chromium using biofilm of E. coli supported on granulated activated carbon. World J Microbiol Biotechnol 25:1695–1703

    Article  CAS  Google Scholar 

  • Garcia JD, Zavala JS, Chavez R, Cozatl D, Sanchez R (2009) Chromium uptake, retention and reduction in photosynthetic Euglena gracilis. Arch Microbiol 191:431–440

    Article  Google Scholar 

  • Gardea-Torresdey JL, Tiemann KJ, Armendariz V, Bess-Oberto L, Chinelli RR, Rios J, Parsons JG, Gamez G (2000) Characterization of Cr(VI) binding and reduction to Cr(III) by the agricultural byproducts of Arena monida (Oat) biomass. J Hazard Mater 80:175–88

    Article  PubMed  CAS  Google Scholar 

  • Gokhale SV, Jyoti KK, Lele SS (2008) Kinetic and equilibrium modeling of chromium (VI) biosorption of fresh and spent Spirulina platensis/Chlorella vulgaris biomass. Bioresour Technol 99:3600–3608

    Article  PubMed  CAS  Google Scholar 

  • Gong R, Ding Y, Liu H, Chen Q, Liu Z (2005) Lead biosorption and desorption by intact and pretreated Spirulina maxima biomass. Chemosphere 58:125–130

    Article  PubMed  CAS  Google Scholar 

  • Gupta VK, Rastogi A (2008) Sorption and desorption studies of chromium (VI) from non viable cyanobacterium Nostoc muscorum biomass. J Hazard Mater 154:347–354

    Article  PubMed  CAS  Google Scholar 

  • Gupta VK, Rastogi A (2009) Biosorption of hexavalent chromium by raw and acid treated green alga Oedogonium hatei from aqueous solutions. J Hazard Mater 163:396–402

    Article  PubMed  CAS  Google Scholar 

  • Gupta VK, Shrivastava AK, Jain N (2001) Biosorption of Cr6+ from aqueous solutions by green algae Spirogyra species. Water Res 35:4079–4085

    Article  PubMed  CAS  Google Scholar 

  • Hasan SH, Singh KK, Prakash O, Talat M, Ho YS (2008) Removal of Cr(VI) from aqueous solutions using agricultural waste ‘maize bran’. J Hazard Mater 152:356–365

    Article  PubMed  CAS  Google Scholar 

  • Ho YS, McKay G (1998) Sorption of dye from aqueous solution by peat. Chem Eng J 70:115–124

    CAS  Google Scholar 

  • Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls-a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanzen 167:191–194

    CAS  Google Scholar 

  • Khattar J, Sarma T, Sharma A (2007) Optimization of chromium removal by the chromium resistant mutant of the cyanobacterium Anacystis nidulans in a continuous flow bio-reactor. J Chem Tech Biot 82:652–657

    Article  CAS  Google Scholar 

  • Kiran B, Kaushik A, Kaushik CP (2007) Response surface methodological approach for optimizing removal of Cr(VI) from aqueous solution using immobilized cyanobacterium. Chem Eng J 126:147–153

    Article  CAS  Google Scholar 

  • Kratochvil D, Volesky B (1998) Advances in the biosorption of heavy metals. Trends Biotechnol 16:291–300

    Article  CAS  Google Scholar 

  • Kratochvil D, Pimentel P, Volesky B (1998) Removal of trivalent and hexavalent chromium by seaweed biosorbent. Environ Sci Technol 32:2693–2698

    Article  CAS  Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica, and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  • Martins BL, Cruz CCV, Luna AS, Henriques CA (2006) Sorption and desorption of Pb2+ ions by dead Sargassum sp. biomass. Biochem Eng J 27:310–314

    Article  CAS  Google Scholar 

  • Monteiro CM, Marques Ana PGC, Castro PML, Malcata FX (2009a) Characterization of Desmodesmus pleiomorphus isolated from a heavy metal-contaminated site: biosorption of zinc. Biodegradation 20:629–641

    Article  PubMed  CAS  Google Scholar 

  • Monteiro CM, Castro PML, Malcata FX (2009b) Use of the microalga Scenedesmus obliquus to remove cadmium cations from aqueous solutions. World J Microbiol Biotechnol 25:1573–1578

    Article  CAS  Google Scholar 

  • Monteiro CM, Castro PML, Malcata FX (2010) Cadmium removal by two strains of Desmodesmus pleiomorphus cells. Water Air Soil Pollut 208:17–27

    Article  CAS  Google Scholar 

  • Mungasavalli DP, Viraraghavan T, Jin YC (2007) Biosorption of chromium from aqueous solutions by pretreated Aspergillus niger: batch and column studies. J Colloid Surface A: Physicochem Eng 301:214–223

    Article  CAS  Google Scholar 

  • Niu H, Volesky B (2003) Characteristics of anionic metal species biosorption with waste crab shells. Hydrometallurgy 71:209–215

    Article  CAS  Google Scholar 

  • OzerA OD, Dursun G, Bulak S (1999) Cadmium adsorption on Cladophora crispata in batch stirred reactors in series. Waste Manage 19:233–240

    Article  Google Scholar 

  • Ozturk S, Aslim B, Suludere Z (2009) Evaluation of chromium (VI) removal behavior by two isolates of Synechocystis sp. in terms of exopolysaccharide (EPS) production and monomer composition. Bioresour Technol 100:5588–5593

    Article  PubMed  CAS  Google Scholar 

  • Panda S, Choudhary S (2005) Chromium stress in plants. Braz J Plant Physiol 17:95–102

    CAS  Google Scholar 

  • Park D, Yun YS, Jo JH, Park JM (2005) Mechanism of hexavalent chromium removal by dead fungal biomass of Aspergillus niger. Water Res 39:533–540

    Article  PubMed  CAS  Google Scholar 

  • Park D, Yun Y, Yim KH, Park JM (2006) Effect of Ni(II) on the reduction of Cr(VI) by Ecklonia biomass. Bioresour Technol 97:1592–1598

    Article  PubMed  CAS  Google Scholar 

  • Prado C, Rodríguez-Montelongo L, González JA, Pagano EA, Hilal M, Prado FE (2010) Uptake of chromium by Salvinia minima: effect on plant growth, leaf respiration and carbohydrate metabolism. J Hazard Mater 15:546–53

    Article  Google Scholar 

  • Qaiser S, Saleemi A, Umar M (2009) Biosorption of Pb2+ and Cr6+ on ground nut hull: equilibrium, kinetics and thermodynamics study. Electr J Biotechnol 12:1–9

    Google Scholar 

  • Rahmani GNH, Sternberg SPK (1999) Bioremoval of lead from water using Lemna minor. Bioresour Technol 70:225–230

    Article  CAS  Google Scholar 

  • Rai AK, Kumar S (1999) Treatment of chromium bearing wastewater by adsorption on brick kiln ash and fly ash. Ind J Environ Health 41:65–73

    CAS  Google Scholar 

  • Rai LC, Gaur JP, Kumar HD (1981) Phycology and heavy metal pollution. Biol Rev 56:99–151

    Article  CAS  Google Scholar 

  • Rai LC, Dubey SK, Mallick N (1992) Influence of chromium on some physiological variables of Anabaena doliolum: interaction with metabolic inhibitors. Biometals 5:13–16

    Article  PubMed  CAS  Google Scholar 

  • Rai LC, Rai PK, Mallick N (1996) Regulation of heavy metal toxicity in acid tolerant Chlorella: physiological and biochemical approaches. Environ Exp Bot 36:99–109

    Article  CAS  Google Scholar 

  • Rehman A, Shakoori FR, Shakoori AR (2007) Heavy metal resistant Distigma proteus (Euglenophyta) isolated from industrial effluents and its possible role in bioremediation of contaminated waste waters. World J Microbiol Biotechnol 23:753–758

    Article  CAS  Google Scholar 

  • Saha B, Orvig C (2010) Biosorbents for hexavalent chromium elimination from industrial and municipal effluents. Coord Chem Rev 254:2959–2972

    Article  CAS  Google Scholar 

  • Sanghi R, Sankararamakrishnan N, Dave B (2009) Fungal bioremediation of chromates: conformational changes of biomass during sequestration, binding, and reduction of hexavalent chromium ions. J Hazard Mater 169:1074–1080

    Article  PubMed  CAS  Google Scholar 

  • Saravanane R, Sundararajan T, Sivamurthyreddy S (2002) Efficiency of chemically modified low cost adsorbents for the removal of heavy metals from wastewater: a comparative study. Indian J Environ Health 44:78–81

    PubMed  CAS  Google Scholar 

  • Sarin V, Pant K (2006) Removal of chromium from industrial waste by using Eucalyptus bark. Bioresour Technol 97:15–20

    Article  PubMed  CAS  Google Scholar 

  • Shi X, Dalal N (1990) Evidence for a Fenton type of mechanism for the generation of OH radicals in the reduction of Cr (VI) in cellular media. Arch Biochem Biophys 281:90–95

    Article  PubMed  CAS  Google Scholar 

  • Stein JR (1973) Handbook of phycological methods: culture methods and growth measurements. Cambridge University Press, New York

    Google Scholar 

  • Tan LH, Chen JP, Ting YP (2003) Biosorption of chromium (VI) by marine algal biomass. Proceedings of the 15th International Biohydrometallurgy Symposium 807–816.

  • Terry PA, Stone W (2002) Biosorption of Cd+2 and Cu+2 contaminated water by Scenedesmus abundans. Chemosphere 47:249–255

    Article  PubMed  CAS  Google Scholar 

  • Tewari N, Vasudevan P, Guha BK (2005) Study of biosorption of Cr(VI) by Mucor hiemalis. Biochem Eng J 23:185–192

    Article  CAS  Google Scholar 

  • Tunali S, Kiran I, Akar T (2005) Chromium(VI) biosorption characteristics of Neurospora crassa fungal biomass. Miner Eng 18:681–689

    Article  CAS  Google Scholar 

  • Tüzün I, Bayramoğlu G, Yalcin E, Basaran G, Celik G, Arica MY (2005) Equilibrium and kinetic studies on biosorption of Hg2+ Cd2+ and Pb2+ ions on to microalga Chlamydomonas reinhardtii. J Environ Manage 77:85–92

    Article  PubMed  Google Scholar 

  • United States Environmental Protection Agency (US EPA) 1998 Toxicological review of hexavalent chromium. US EPA, Washington DC.

  • Volesky B (2007) Biosorption and me. Water Res 41:4017–4029

    Article  PubMed  CAS  Google Scholar 

  • Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Progress 11:235–250

    Article  CAS  Google Scholar 

  • WHO (2004) Guidelines for drinking water quality, 3rd edn. World Health Organization, Geneva

    Google Scholar 

  • Yun YS, Park D, Park JM, Volesky B (2001) Biosorption of trivalent chromium on the brown seaweed biomass. Environ Sci Technol 35:4353–4358

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors gratefully acknowledge Mrs. Sucharitha S. for her statistical analysis and Dr. R. Shashidhar for grammatical corrections. Special thanks to anonymous reviewers whose remarks helped to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyothi Miranda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miranda, J., Krishnakumar, G. & Gonsalves, R. Cr6+ bioremediation efficiency of Oscillatoria laete-virens (Crouan & Crouan) Gomont and Oscillatoria trichoides Szafer: kinetics and equilibrium study. J Appl Phycol 24, 1439–1454 (2012). https://doi.org/10.1007/s10811-012-9800-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-012-9800-x

Keywords

Navigation