Skip to main content
Log in

Use of sodium bicarbonate to stimulate triacylglycerol accumulation in the chlorophyte Scenedesmus sp. and the diatom Phaeodactylum tricornutum

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

There is potential for algal-derived biofuel to help alleviate part of the world’s dependency on petroleum based fuels. However, research must still be done on strain selection, induction of triacylglycerol (TAG) accumulation, and fundamental algal metabolic studies, along with large-scale culturing techniques, harvesting, and biofuel/biomass processing. Here, we have advanced the knowledge on Scenedesmus sp. strain WC-1 by monitoring growth, pH, and TAG accumulation on a 14:10 light–dark cycle with atmospheric air or 5% CO2 in air (v/v) aeration. Under ambient aeration, there was a loss of pH-induced TAG accumulation, presumably due to TAG consumption during the lower culture pH observed during dark hours (pH 9.4). Under 5% CO2 aeration, the growth rate nearly doubled from 0.78 to 1.53 d−1, but the pH was circumneutral (pH 6.9) and TAG accumulation was minimal. Experiments were also performed with 5% CO2 during the exponential growth phase, which was then switched to aeration with atmospheric air when nitrate was close to depletion. These tests were run with and without the addition of 50 mM sodium bicarbonate. Cultures without added bicarbonate showed decreased growth rates with the aeration change, but there was no immediate TAG accumulation. The cultures with bicarbonate added immediately ceased cellular replication and rapid TAG accumulation was observed, as monitored by Nile Red fluorescence which has previously been correlated by gas chromatography to cellular TAG levels. Sodium bicarbonate addition (25 mM final concentration) was also tested with the marine diatom Phaeodactylum tricornutum strain Pt-1 and this organism also accumulated TAG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Beardall J (1981) CO2 accumulation by Chlorella saccharophila (Chlorophyceae) at low external pH: evidence for active transport of inorganic carbon at the chloroplast envelope. J Phycol 17:371–373

    Article  CAS  Google Scholar 

  • Beardall J, Raven JA (1981) Transport of inorganic carbon and the ‘CO2 concentrating mechanism’ in Chlorella emersonii (Chlorophyceae). J Phycol 17:134–141

    Article  CAS  Google Scholar 

  • Bilgen S, Kaygusuz K, Sari A (2004) Renewable energy for a clean and sustainable future. Energy Sources 26:1119–1129

    Article  Google Scholar 

  • Bozzo GG, Colman B, Matsuda Y (2000) Active transport of CO2 and bicarbonate is induced in response to external CO2 concentration in the green alga Chlorella kessleri. J Exp Bot 51:1341–1348

    Article  PubMed  CAS  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energy Rev 14:21

    Article  Google Scholar 

  • Brown L (2006) Plan B 2.0: Rescuing a planet under stress and a civilization in trouble. Exp Upd edn. W.W. Norton Publishing, New York, NY

  • Chen W, Zhang CW, Song LR, Sommerfeld M, Hu Q (2009) A high throughput Nile Red method for quantitative measurement of neutral lipids in microalgae. J Microbiol Methods 77:41–47

    Article  PubMed  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  PubMed  CAS  Google Scholar 

  • Colman B, Huertas IE, Bhatti S, Dason JS (2002) The diversity of inorganic carbon acquisition mechanisms in eukaryotic microalgae. Func Plant Biol 29:261–270

    Article  CAS  Google Scholar 

  • Cooksey K, Guckert J, Williams S, Callis P (1987) Fluorometric determination of the neutral lipid content of microalgal cells using Nile Red. J Microbiol Methods 6:333–345

    Article  CAS  Google Scholar 

  • Cunningham J (2007) Biofuel joins the jet set. Prof Eng 20:32–32

    Google Scholar 

  • da Silva T, Reis A, Medeiros R, Oliveira A, Gouveia L (2009) Oil production towards biofuel from autotrophic microalgae semicontinuous cultivations monitorized by flow cytometry. Appl Biochem Biotechnol 159:568–578

    Article  PubMed  Google Scholar 

  • Demirbas MF (2010) Microalgae as a feedstock for biodiesel. Energy Educ Sci Technol-Pt A 25:31–43

    CAS  Google Scholar 

  • Demirbas MF, Balat M, Balat H (2009) Potential contribution of biomass to the sustainable energy development. Energy Convers Manage 50:1746–1760

    Article  CAS  Google Scholar 

  • Dismukes GC, Carrieri D, Bennette N, Ananyev GM, Posewitz MC (2008) Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr Opin Biotechnol 19:235–240

    Article  PubMed  CAS  Google Scholar 

  • Dukes J (2003) Burning buried sunshine: human consumption of ancient solar energy. Clim Chang 61:31–44

    Article  CAS  Google Scholar 

  • Elsey D, Jameson D, Raleigh B, Cooney M (2007) Fluorescent measurement of microalgal neutral lipids. J Microbiol Methods 68:639–642

    Article  PubMed  CAS  Google Scholar 

  • Francisco EC, Neves DB, Jacob-Lopes E, Franco TT (2010) Microalgae as feedstock for biodiesel production: carbon dioxide sequestration, lipid production and biofuel quality. J Chem Technol Biotechnol 85:395–403

    Article  CAS  Google Scholar 

  • Gardner R, Peters P, Peyton B, Cooksey K (2011) Medium pH and nitrate concentration effects on accumulation of triacylglycerol in two members of the Chlorophyta. J Appl Phycol 26:1005–1016

    Article  Google Scholar 

  • Ghoshal D, Goyal A (2001) Oxygen inhibition of dissolved inorganic carbon uptake in unicellular green algae. Phycol Res 49:319–324

    Article  CAS  Google Scholar 

  • Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56:99–131

    Article  PubMed  CAS  Google Scholar 

  • Goyal A, Tolbert NE (1990) Salicylhydroxamic acid (SHAM) inhibition of the dissolved inorganic carbon concentrating process in unicellular green algae. Plant Physiol 92:630–636

    Article  PubMed  CAS  Google Scholar 

  • Greenwell H, Laurens L, Shields R, Lovitt R, Flynn K (2010) Placing microalgae on the biofuels priority list: a review of the technological challenges. J Roy Soc Interface 7:703–726

    Article  CAS  Google Scholar 

  • Guckert JB, Cooksey KE (1990) Triglyceride accumulation and fatty acid profile changes in Chlorella (Chlorophyta) during high pH-induced cell inhibition. J Phycol 26:72–79

    Article  CAS  Google Scholar 

  • Guckert JB, Thomas RM (1988) Understanding the regulation of lipid synthesis in Chlorella: a preliminary step in the formation of biological fuels. Symp on Appl Phycol, Monterey CA, USA

    Google Scholar 

  • Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Nat Acad Sci USA 103:11206–11210

    Article  PubMed  CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  PubMed  CAS  Google Scholar 

  • Kaplan A, Reinhold L (1999) CO2 concentrating mechanisms in photosynthetic microorganisms. Annu Rev Plant Physiol Plant Mol Biol 50:539

    Article  PubMed  CAS  Google Scholar 

  • Lardon L, Hélias A, Sialve B, Steyer J-P, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43:6475–6481

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Yoon B-D, Oh H-M (1998) Rapid method for the determination of lipid from the green alga Botryococcus braunii. Biotechnol Tech 12:553–556

    Article  CAS  Google Scholar 

  • Liu Z-Y, Wang G-C, Zhou B-C (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresource Technol 99:4717–4722

    Article  CAS  Google Scholar 

  • Martino AD, Meichenin A, Shi J, Pan K, Bowler C (2007) Genetic and phenotypic characterization of Phaeodactylum tricornutum (Bacillariophyceae) accessions. J Phycol 43:992–1009

    Article  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energy Rev 14:217–232

    Article  CAS  Google Scholar 

  • Matsuda Y, Colman B (1995) Induction of CO2 and bicarbonate transport in the green alga Chlorella ellipsoidea (i. time course of induction of the two systems). Plant Physiol 108:247–252

    PubMed  CAS  Google Scholar 

  • Moroney JV, Somanchi A (1999) How do algae concentrate CO2‚ to increase the efficiency of photosynthetic carbon fixation? Plant Physiol 119:9–16

    Article  PubMed  CAS  Google Scholar 

  • Moroney JV, Tolbert NE (1985) Inorganic carbon uptake by Chlamydomonas reinhardtii. Plant Physiol 77:253–258

    Article  PubMed  CAS  Google Scholar 

  • Moroney JV, Ynalvez RA (2007) Proposed carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii. Eukaryotic Cell 6:1251–1259

    Article  PubMed  CAS  Google Scholar 

  • Moroney JV, Kitayama M, Togasaki RK, Tolbert NE (1987) Evidence for inorganic carbon transport by intact chloroplasts of Chlamydomonas reinhardtii. Plant Physiol 83:460–463

    Article  PubMed  CAS  Google Scholar 

  • Nichols H, Bold H (1965) Trichosarcina polymorpha Gen. et Sp. Nov. J Phycol 1:34–38

    Article  Google Scholar 

  • Palmqvist K, Sjoberg S, Samuelsson G (1988) Induction of inorganic carbon accumulation in the unicellular green algae Scenedesmus obliquus and Chlamydomonas reinhardtii. Plant Physiol 87:437–442

    Article  PubMed  CAS  Google Scholar 

  • Posten C, Schaub G (2009) Microalgae and terrestrial biomass as source for fuels—a process view. J Biotechnol 142:64–69

    Article  PubMed  CAS  Google Scholar 

  • Provasoli L, McLaughlin JJA, Droop MR (1957) The development of artificial media for marine algae. Arch Microbiol 25:392–428

    CAS  Google Scholar 

  • Radmer R, Ollinger O (1980) Light-driven uptake of oxygen, carbon dioxide, and bicarbonate by the green alga Scenedesmus. Plant Physiol 65:723–729

    Article  PubMed  CAS  Google Scholar 

  • Raven J (2010) Inorganic carbon acquisition by eukaryotic algae: four current questions. Photosynth Res 106:123–134

    Article  PubMed  CAS  Google Scholar 

  • Reinfelder JR, Milligan AJ, Morel FMM (2004) The role of the C4 pathway in carbon accumulation and fixation in a marine diatom. Plant Physiol 135:2106–2111

    Article  PubMed  CAS  Google Scholar 

  • Rotatore C, Colman B (1991) The acquisition and accumulation of inorganic carbon by the unicellular green alga Chlorella ellipsoidea. Plant Cell Environ 14:377–382

    Article  CAS  Google Scholar 

  • Schenk P, Thomas-Hall S, Stephens E, Marx U, Mussgnug J, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnergy Res 1:20–43

    Article  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the U.S. Department of Energy’s aquatic species program—biodiesel from algae. NREL/TP-580-24190

  • Shiraiwa Y, Goyal A, Tolbert NE (1993) Alkalization of the medium by unicellular green algae during uptake dissolved inorganic carbon. Plant Cell Physiol 34:649–657

    CAS  Google Scholar 

  • Stephenson A, Dennis J, Howe C, Scott S, Smith A (2010) Influence of nitrogen-limitation regime on the production by Chlorella vulgaris of lipids for biodiesel feedstocks. Biofuels 1:47–58

    Article  CAS  Google Scholar 

  • Thielmann J, Tolbert NE, Goyal A, Senger H (1990) Two systems for concentrating CO2 and bicarbonate during photosynthesis by Scenedesmus. Plant Physiol 92:622–629

    Article  PubMed  CAS  Google Scholar 

  • Thomas RM (1990) Triglyceride accumulation and the cell cycle in Chlorella. Thesis (MS), Montana State University

  • Tortell PD, Reinfelder JR, Morel FMM (1997) Active uptake of bicarbonate by diatoms. Nature 390:243–244

    Article  CAS  Google Scholar 

  • Yu E, Zendejas F, Lane P, Gaucher S, Simmons B, Lane T (2009) Triacylglycerol accumulation and profiling in the model diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum (Baccilariophyceae) during starvation. J Appl Phycol 21:669–681

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank all members of the MSU Algal Biofuels Group for intellectual support. Also of special note is the instrumental support from the MSU Center for Biofilm Engineering and the MSU Environmental and Biofilm Mass Spectrometry Facility.

Financial disclosure

Funding was provided by the Air Force Office of Scientific Research (AFOSR grant FA9550-09-1-0243), US Department of Energy (Office of Biomass Production grant DE-FG36-08GO18161), and partial support for RDG was provided by NSF IGERT Program in Geobiological Systems (DGE 0654336) at MSU.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Keith E. Cooksey or Brent M. Peyton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gardner, R.D., Cooksey, K.E., Mus, F. et al. Use of sodium bicarbonate to stimulate triacylglycerol accumulation in the chlorophyte Scenedesmus sp. and the diatom Phaeodactylum tricornutum . J Appl Phycol 24, 1311–1320 (2012). https://doi.org/10.1007/s10811-011-9782-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-011-9782-0

Keywords

Navigation