Skip to main content
Log in

Variation in Emotion and Cognition Among Fishes

  • Articles
  • Published:
Journal of Agricultural and Environmental Ethics Aims and scope Submit manuscript

Abstract

Increasing public concern for the welfare of fish species that human beings use and exploit has highlighted the need for better understanding of the cognitive status of fish and of their ability to experience negative emotions such as pain and fear. Moreover, studying emotion and cognition in fish species broadens our scientific understanding of how emotion and cognition are represented in the central nervous system and what kind of role they play in the organization of behavior. For instance, on a macro neuro-architecture level the brains of fish species look dramatically different from those of mammals, while such a dramatic difference does not (always) occur at the level of emotion- and cognition-related behavior. Here, therefore, we discuss the evidence of emotion and cognition in fish species related to underlying neuro-architecture and the role that emotion and cognition play in the organization of behavior. To do so we use a framework encompassing a number of steps allowing a systematic approach to these issues. Emotion and cognition confer on human and non-human animals the capacity to compliment and/or override immediate reflexes to stimuli and so allow a large degree of flexibility in behavior. Systematic research on behavior that in mammals is indicative of emotion and cognition has been conducted in only a few fish species. The data thus far indicate that in these species brain-behavior relationships are not fundamentally different from those observed in mammals. Furthermore, data from other studies show evidence that behavior patterns related to emotion and cognition vary between fish species as well within fish species, related to sex and life history stage for example. From a welfare perspective, knowledge of such variability will potentially help us to design optimal living conditions for fish species kept by humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arlinghaus, R., Cooke, S. J., Schwab, A., & Cowx, I. G. (2007). Fish welfare: A challenge of the feelings-based approach, with implications for recreational fishing. Fish and Fisheries, 8, 57–71.

    Article  Google Scholar 

  • Ashley, P. J., Ringrose, S., Edwards, K. L., Wallington, E., McCrohan, C. R., & Sneddon, L. U. (2009). Effect of noxious stimulation upon antipredator responses and dominance status in rainbow trout. Animal Behaviour, 77, 403–410.

    Article  Google Scholar 

  • Ashley, P. J., Sneddon, L. U., & McCrohan, C. R. (2006). Properties of corneal receptors in a teleost fish. Neuroscience Letters, 410, 165–168.

    Article  Google Scholar 

  • Balleine, B. W., & Dickinson, A. (1998). Goal-directed instrumental action: Contingency and incentive learning and their cortical substrates. Neuropharmacology, 37, 407–419.

    Article  Google Scholar 

  • Bechara, A., Damasio, H., Tranel, D., & Damasio, A. R. (1997). Deciding advantageously before knowing the advantageous strategy. Science, 275, 1293–1295.

    Article  Google Scholar 

  • Benzie, V. L. (1967). Some aspects of the anti-predator responses of two species of stickleback. DPhil thesis, University of Oxford.

  • Bermond, B. (1997). The myth of animal suffering. In M. Dol, S. Kasanmoentalib, S. Lijmbach, E. Rivas & R. van den Bos (Eds.), Animal consciousness and animal ethics; perspectives from the Netherlands (pp. 125–143). Assen: Van Gorcum, Animals in Philosophy and Science Vol. 1.

  • Bermond, B. (2001). A neuropsychological and evolutionary approach to animal consciousness and animal suffering. Animal Welfare, 10, S47–S62.

    Google Scholar 

  • Braithwaite, V. A., & Boulcott, P. (2007). Pain perception, aversion and fear in fish. Diseases of Aquatic Organisms, 75, 131–138.

    Article  Google Scholar 

  • Braithwaite, V. A., & Girvan, J. R. (2003). Use of water flow to provide spatial information in a small-scale orientation task. Journal of Fish Biology, 63, 74–83.

    Article  Google Scholar 

  • Brelin, D., Petersson, E., Dannewitz, J., Dahl, J., & Winberg, S. (2008). Frequency distribution of coping strategies in four populations of brown trout (Salmo trutta). Hormones and Behaviour, 53, 546–556.

    Article  Google Scholar 

  • Brelin, D., Petersson, E., & Winberg, S. (2005). Divergent stress coping styles in juvenile brown trout (Salmo trutta). Annals of the New York Academy of Science, 1040, 239–245.

    Article  Google Scholar 

  • Broglio, C., Gómez, A., Durán, E., Ocaña, F. M., Jiménez-Moya, F., & Rodríguez, S. C. (2005). Hallmarks of a common forebrain vertebrate plan: Specialized pallial areas for spatial, temporal and emotional memory in actinopterygian fish. Brain Research Bulletin, 66, 277–281.

    Article  Google Scholar 

  • Broglio, C., Rodríguez, F., Gómez, A., Arias, J. L., & Salas, C. (2010). Selective involvement of the goldfish lateral pallium in spatial memory. Behaviorial Brain Research, 210, 191–201.

    Article  Google Scholar 

  • Bshary, R., & Côté, I. M. (2008). New perspectives on marine cleaning mutualism. In C. Magnhagen, V. A. Braithwaite, E. Forsgren, & B. G. Kapoor (Eds.), Fish Behavior. New Hampshire: Science Publishers.

    Google Scholar 

  • Cabanac, M. (1971). Physiological role of pleasure. Science, 173, 1103–1107.

    Article  Google Scholar 

  • Cabanac, M. (1979). Sensory pleasure. Quarterly Review of Biology, 54, 1–29.

    Article  Google Scholar 

  • Cabanac, M. (1992). Pleasure: The common currency. Journal of Theoretical Biology, 155, 173–200.

    Article  Google Scholar 

  • Cabanac, M. (2008). The dialectics of pleasure. In M. L. Kringelbach & K. C. Berridge (Eds.), Pleasures of the brain. The neural basis of taste, smell and other rewards (pp. 113–124). Oxford: Oxford University Press.

    Google Scholar 

  • Clark, R. E., & Squire, L. R. (1998). Classical conditioning and brain systems: The role of awareness. Science, 280, 77–81.

    Article  Google Scholar 

  • Damasio, A. R. (1994). Descartes’ error. Emotion, reason and the human brain. New York: Avon Books.

    Google Scholar 

  • Danisman, E., Bshary, R., & Bergmüller, R. (2010). Do cleaner fish learn to feed against their preference in a reverse reward contingency task? Animal Cognition, 13, 41–49.

    Article  Google Scholar 

  • Dawkins, M. S. (2001). Who needs consciousness? Animal Welfare, 10, S19–S29.

    Google Scholar 

  • de Veer Bos, M. W., & van den Bos, R. (1999). A critical review of methodology and interpretation of mirror self recognition research in nonhuman primates. Animal Behaviour, 58, 459–468.

    Article  Google Scholar 

  • Dias-Ferreira, E., Sousa, J. C., Melo, I., Morgado, P., Mesquita, A. R., Cerqueira, J. J., et al. (2009). Chronic stress causes frontostriatal reorganization and affects decision-making. Science, 325, 621–625.

    Article  Google Scholar 

  • Dickinson, A., & Balleine, B. (1994). Motivational control of goal-directed action. Animal Learning and Behaviour, 22, 1–18.

    Article  Google Scholar 

  • Dickinson, A., & Balleine, B. (2008). The cognitive/motivational interface. In M. L. Kringelbach & K. C. Berridge (Eds.), Pleasures of the brain. The neural basis of taste, smell and other rewards (pp. 74–84). Oxford: Oxford University Press.

    Google Scholar 

  • Dunlop, R., & Laming, P. (2005). Mechanoreceptive and nociceptive responses in the central nervous system of goldfish (Carassius auratus) and trout (Oncorhynchus mykiss). The Journal of Pain, 6, 561–568.

    Article  Google Scholar 

  • Durán, E., Ocaña, F. M., Broglio, C., Rodríguez, F., & Salas, C. (2010). Lateral but not medial telencephalic pallium ablation impairs the use of goldfish spatial allocentric strategies in a ‘hole-board’ task. Behaviorial Brain Research, 214, 480–487.

    Article  Google Scholar 

  • Gonzalez-Voyer, A., Winberg, S., & Kolm, N. (2009). Brain structure evolution in a basal vertebrate clade: evidence from phylogenetic comparative studies of cichlid fish. BMC Evolutionary Biology, 9, 238. doi:10.1186/1471-2148-9-238.

    Article  Google Scholar 

  • Harvey, M. C., & Brown, G. E. (2004). Dine or dash? Ontogenetic shift in the response of yellow perch to conspecific alarm cues. Environmental Biology of Fishes, 70, 345–352.

    Article  Google Scholar 

  • Healy, S. D., & Rowe, C. (2007). A critique of comparative studies of brain size. Proceedings of the Royal Society, London Series B, 274, 453–464.

    Article  Google Scholar 

  • Hoogland, R. D., Morris, D., & Tinbergen, N. (1957). The spines of sticklebacks (Gasterosteus and Pygosteus) as means of defence against predators (Perca and Esox). Behaviour, 10, 205–237.

    Article  Google Scholar 

  • Huntingford, F. A., Mesquita, F., & Kadri, S. (2012). Personality variation in cultures fish: Implications for production and welfare. In C. Carare & D. Maestripieri (Eds.), Animal personalities: Behavior, physiology and evolution. Chicago: Chicago University Press.

    Google Scholar 

  • Huntingford, F. A., Wright, F. P. I., & Tierney, J. F. (1994). Adaptive variation in anti-predator behavior. In M. A. Bell & S. E. Foster (Eds.), The evolutionary biology of sticklebacks. Cambridge: Cambridge University Press.

    Google Scholar 

  • Ito, H., & Yamamoto, N. (2009). Non-laminar cerebral cortex in teleost fishes? Biology Letters, 5, 117–121.

    Article  Google Scholar 

  • Kolm, N., Gonzalez-Voyer, A., Brelin, D., & Winberg, S. (2009). Evidence for small-scale variation in the vertebrate brain: Mating strategy and sex affect brain size in wild brown trout (Salmo trutta). Journal of Evolutionary Biology, 22, 2524–2531.

    Article  Google Scholar 

  • Kondoh, M. (2010). Linking learning approaches to trophic interactions: A brian size-based approach. Functional Ecology, 24, 35–43.

    Article  Google Scholar 

  • Korte, S. M., Koolhaas, J. M., Wingfield, J. C., & McEwen, B. S. (2005). The Darwinian concept of stress: Benefits of allostasis and costs of allostatic load and the trade off in health and disease. Neuroscience and Biobehavioral Reviews, 29, 3–38.

    Article  Google Scholar 

  • Kotrschal, K., Van Staaden, M. J., & Huber, R. (1998). Fish brains: Evolution and environmental relationships. Reviews in Fish Biology and Fisheries, 8, 272–408.

    Article  Google Scholar 

  • Larson, E. T., Norris, D. O., & Summers, C. H. (2003). Monoamine changes associated with socially induced sex reversal in the saddleback wrasse. Neuroscience, 119, 251–263.

    Article  Google Scholar 

  • Linsey, T. J., & Collin, S. P. (2006). Brain morphology in large pelagic fish: A comparison between sharks and teleosts. Journal of Fish Biology, 68, 532–554.

    Article  Google Scholar 

  • Macphail, E. M. (1982). Brain and intelligence in vertebrates. Oxford: Clarendon Press.

    Google Scholar 

  • Mason, G. J. (2010). Species differences in responses to captivity: Stress, welfare and the comparative method. Trends in Ecology & Evolution, 25, 713–721.

    Article  Google Scholar 

  • Mendl, M., & Paul, E. S. (2004). Consciousness, emotion and animal welfare: Insights from cognitive science. Animal Welfare, 13, S17–S25.

    Google Scholar 

  • Nilsson, J., Kristiansen, T. S., Fosseidengen, J. E., Ferno, A., & van den Bos, R. (2008). Learning in cod (Gadus morhua): Long trace interval retention. Animal Cognition, 11, 215–222.

    Article  Google Scholar 

  • Nordgreen, J., Horsberg, T. E., Ranheim, B., & Chen, A. C. N. (2007). Somatosensory evoked potentials in the telencephalon of Atlantic salmon (Salmo salar) following galvanic stimulation of the tail. Journal of Comparative Physiology A, 193, 1235–1242.

    Article  Google Scholar 

  • Nordgreen, J., Janczak, A. M., Hovland, A. L., Ranheim, B., & Horsberg, T. E. (2010). Trace classical conditioning in rainbow trout (Oncorhynchus mykiss): What do they learn? Animal Cognition, 13, 303–309.

    Article  Google Scholar 

  • Panskepp, J. (2003). At the interface of the affective, behavioral, and cognitive neurosciences: Decoding the emotional feelings of the brain. Brain and Cognition, 52, 4–14.

    Article  Google Scholar 

  • Panula, P., Chen, Y.-C., Priyadarshini, M., Kudo, H., Semenova, S. M., Sundvik, M., et al. (2010). The comparative neuroanatomy and neurochemistry of zebrafish CNS systems of relevance to human neuropsychiatric diseases. Neurobiology of Disease, 40, 46–57.

    Article  Google Scholar 

  • Panula, P., Sallinen, V., Sundvik, M., Kolehmainen, J., Torkko, V., Tiittula, A., et al. (2006). Modulatory neurotransmitter systems and behavior: Towards zebrafish models of neurodegenerative diseases. Zebrafish, 3, 235–247.

    Article  Google Scholar 

  • Pollen, A. A., Dobberfuhl, A. P., Scace, J., Igulu, M. M., Renn, S. C. P., Shumway, C. A., et al. (2007). Environmental complexity and social organisation sculpt the brain in Lake Tanganyikan cichlid fish. Brain, Behaviour and Evolution, 70, 21–39.

    Article  Google Scholar 

  • Rodríguez, F., López, J. C., Vargas, J. P., Gómez, Y., Broglio, C., & Salas, C. (2002). Conservation of spatial memory function in the pallial forebrain of amniotes and ray-finned fishes. Journal of Neuroscience, 22, 2894–2903.

    Google Scholar 

  • Rolls, E. (2007). Emotions explained. Oxford: Oxford University Press.

    Google Scholar 

  • Romanes, G. J. (1883). Mental evolution in animals. London: Kegan Paul, Trench and Co.

    Google Scholar 

  • Salas, C., Broglio, C., Durán, E., Gómez, A., Ocaña, F. M., Jiménez-Moya, F., et al. (2006). Neuropsychology of learning and memory in teleost fish. Zebrafish, 3, 157–171.

    Article  Google Scholar 

  • Schwabe, L., Oitzl, M. S., Phlippsen, C., Richter, S., Bohringer, A., Wippich, W., et al. (2007). Stress modulates the use of spatial versus stimulus-response learning strategies in humans. Learning and Memory, 14, 109–116.

    Article  Google Scholar 

  • Schwabe, L., & Wolf, O. T. (2009). Stress prompts habit behavior in humans. Journal of Neuroscience, 29, 7191–7198.

    Article  Google Scholar 

  • Schwabe, L., Wolf, O. T., & Oitzl, M. S. (2010). Memory formation under stress: Quantity and quality. Neuroscience and Biobehavioral Reviews, 34, 584–591.

    Article  Google Scholar 

  • Shettleworth, S. J. (1998). Cognition evolution and behaviour. New York: Oxford University Press.

    Google Scholar 

  • Shumway, C. A. (2008). Habitat complexity brain and behavior. Brain, Behaviour and Evolution, 72, 123–134.

    Article  Google Scholar 

  • Sneddon, L. U., Braithwaite, V. A., & Gentle, M. J. (2003a). Do fishes have nociceptors? Evidence for the evolution of a vertebrate sensory system. Proceeding of the Royal Society, London, Series B, 270, 1115–1121.

    Article  Google Scholar 

  • Sneddon, L. U., Braithwaite, V. A., & Gentle, M. J. (2003b). Novel object test: Examining pain and fear in the rainbow trout. The Journal of Pain, 4, 431–440.

    Article  Google Scholar 

  • Spruijt, B. M., van den Bos, R., & Pijlman, F. (2001). A concept of welfare based on how the brain evaluates its own activity: Anticipatory behavior as an indicator for this activity. Applied Animal Behaviour Science, 72, 145–171.

    Article  Google Scholar 

  • Stienen, P. J., van Oostrom, H., van den Bos, R., de Groot, H. N. M., & Hellebrekers, L. J. (2006). Vertex-recorded, rather than primary somatosensory cortex-recorded, somatosensory-evoked potentials signal unpleasantness of noxious stimuli in the rat. Brain Research Bulletin, 70, 203–212.

    Article  Google Scholar 

  • Tulley, J. J., & Huntingford, F. A. (1987). Paternal care and the development of adaptive variation in anti-predator responses in sticklebacks. Animal Behaviour, 35, 1570–1572.

    Article  Google Scholar 

  • van den Bos, R. (1997). Reflections on the organisation of mind, brain and behavior. In M. Dol, S. Kasanmoentalib, S. Lijmbach, E. Rivas & R. van den Bos (Eds.), Animal consciousness and animal ethics; perspectives from the Netherlands (pp. 144–166). Assen: Van Gorcum, Animals in Philosophy and Science Vol. 1.

  • van den Bos, R. (2000). General organizational principles of the brain as key to the study of animal consciousness. Psyche, 6, published on-line at http://psyche.cs.monash.edu.au/v6/psyche-6-05-vandenbos.html.

  • van den Bos, R. (2001). The hierarchical organization of the brain as a key to the study of consciousness in human and non-human animals: Phylogenetic implications. Animal Welfare, 10, S246–S247.

    Google Scholar 

  • van den Bos, R. (2004). Emotion and cognition. In M. Bekoff (Ed.), The handbook of animal behavior (pp. 554–557). Westport (CT): Greenwood Press.

    Google Scholar 

  • van den Bos, R., & de Ridder, D. (2006). Evolved to satisfy our immediate needs: Self control and the rewarding properties of food. Appetite, 47, 24–29.

    Article  Google Scholar 

  • van den Bos, R., Houx, B. B., & Spruijt, B. M. (2002). Cognition and emotion in concert in human and nonhuman animals. In M. Bekoff, C. Allen, & G. Burghardt (Eds.), The cognitive animal; empirical and theoretical perspectives on animal Cognition (pp. 97–103). Cambridge (MA): The MIT Press.

    Google Scholar 

  • Vargas, J. P., López, J. C., & Portavella, M. (2009). What are the functions of fish brain pallium? Brain Research Bulletin, 79, 436–440.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria A. Braithwaite.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braithwaite, V.A., Huntingford, F. & van den Bos, R. Variation in Emotion and Cognition Among Fishes. J Agric Environ Ethics 26, 7–23 (2013). https://doi.org/10.1007/s10806-011-9355-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10806-011-9355-x

Keywords

Navigation