Skip to main content
Log in

Reversal Learning Task in Children with Autism Spectrum Disorder: A Robot-Based Approach

  • Original Paper
  • Published:
Journal of Autism and Developmental Disorders Aims and scope Submit manuscript

Abstract

Children with autism spectrum disorder (ASD) engage in highly perseverative and inflexible behaviours. Technological tools, such as robots, received increased attention as social reinforces and/or assisting tools for improving the performance of children with ASD. The aim of our study is to investigate the role of the robotic toy Keepon in a cognitive flexibility task performed by children with ASD and typically developing (TD) children. The number of participants included in this study is 81 children: 40 TD children and 41 children with ASD. Each participant had to go through two conditions: robot interaction and human interaction in which they had performed the reversal learning task. Our primary outcomes are the number of errors from acquisition phase and from reversal phase of the task; as secondary outcomes we have measured attentional engagement and positive affect. The results of this study showed that children with ASD are more engaged in the task and they seem to enjoy more the task when interacting with the robot compared with the interaction with the adult. On the other hand their cognitive flexibility performance is, in general, similar in the robot and the human conditions with the exception of the learning phase where the robot can interfere with the performance. Implication for future research and practice are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Admoni, H., Bank, C., Tan, J., Toneva, M., & Scassellati, B. (2011). Robot gaze does not reflexively cue human attention. In Proceedings of the 33rd annual conference of the cognitive science society (pp. 1983–1988). Austin, TX: Cognitive Science Society.

  • Bandura, A. (1962). Social learning through imitation. In M. R. Jones (Ed.), Nebraska symposium on motivation (pp. 211–269). Lincoln: University of Nebraska Press.

  • Bedford, R., Elsabbagh, M., Gliga, T., Pickles, A., Senju, A., Charman, T., & Johnson, M. H. (2012). Precursors to social and communication difficulties in infants at-risk for autism: Gaze following and attentional engagement. Journal of Autism and Developmental Disorders, 42(10), 2208–2218. doi:10.1007/s10803-012-1450-y.

    Article  PubMed  Google Scholar 

  • Bernier, E. P., & Scassellati, B. (2010). The similarity-attraction effect in human–robot interaction. In IEEE 9th international conference on development and learning (ICDL) (pp. 286–290). IEEE.

  • Cambridge Cognition. (2002). CANTAB 1. Cambridge Cognition.

  • Cao, H. L., Van de Perre, G., Simut, R., Pop, C., Peca, A., Lefeber, D., & Vanderborght, B. (2014). Enhancing my Keepon robot: A simple and low-cost solution for robot platform in human–robot interaction studies. In 2014 ROMAN: The 23rd IEEE international workshop on robot and human interactive communication.

  • Coldren, J. T., & Halloran, C. (2003). Spatial reversal as a measure of executive functioning in children with autism. The Journal of Genetic Psychology, 164(1), 29–41. doi:10.1080/00221320309597501.

    Article  PubMed  Google Scholar 

  • Costescu, C., Vanderborght, B., & David, D. (2014). The effects of robot-enhanced psychotherapy: A meta-analysis. Review of General Psychology. doi:10.1037/gpr0000007.

  • David, D., Anton, R., Stefan, S., Mogoase, C., & Matu, S. (2010). Adaptation of the autism diagnostic observation schedule. Bucharest, Romania: O.S. Publishing.

    Google Scholar 

  • David, D., Matu, S. A., & David, O. A. (2014). Robot-based psychotherapy: Concepts development, state of the art, and new directions. International Journal of Cognitive Therapy, 7(2), 192–210. doi:10.1521/ijct.2014.7.2.192.

    Article  Google Scholar 

  • D’Cruz, A. M., Ragozzino, M. E., Mosconi, M. W., Shrestha, S., Cook, E. H., & Sweeney, J. A. (2013). Reduced behavioral flexibility in autism spectrum disorders. Neuropsychology, 27(2), 152–174. doi:10.1037/a0031721.

    Article  PubMed Central  PubMed  Google Scholar 

  • Diehl, J. J., Schmitt, L. M., Villano, M., & Crowell, C. R. (2012). The clinical use of robots for individuals with autism spectrum disorders: A critical review. Research in Autism Spectrum Disorders, 6(1), 249–262. doi:10.1016/j.rasd.2011.05.006.

    Article  PubMed Central  PubMed  Google Scholar 

  • Duquette, A., Michaud, F., & Mercier, H. (2008). Exploring the use of a mobile robot as an imitation agent with children with low-functioning autism. Autonomous Robots, 24(2), 147–157. doi:10.1007/s10514-007-9056-5.

    Article  Google Scholar 

  • Feil-Seifer, D., & Mataric, M. (2008). Robot-assisted therapy for children with autism spectrum disorders. In Proceedings of the 7th international conference on interaction design and children (pp. 49–52). ACM.

  • Ferrari, E., Robins, B., & Dautenhahn, K. (2009). Therapeutic and educational objectives in robot assisted play for children with autism. In The 18th IEEE international symposium on robot and human interactive communication. RO-MAN (pp. 108–114). IEEE.

  • Geurts, H. M., Corbett, B., & Solomon, M. (2009). The paradox of cognitive flexibility in autism. Trends in Cognitive Sciences, 13(2), 74–82. doi:10.1016/j.tics.2008.11.006.

    Article  PubMed  Google Scholar 

  • Geurts, H. M., Verté, S., Oosterlaan, J., Roeyers, H., & Sergeant, J. A. (2004). How specific are executive functioning deficits in attention deficit hyperactivity disorder and autism? Journal of Child Psychology and Psychiatry, 45(4), 836–854. doi:10.1111/j.1469-7610.2004.00276.x.

    Article  PubMed  Google Scholar 

  • Ghahremani, D. G., Monterosso, J., Jentsch, J. D., Bilder, R. M., & Poldrack, R. A. (2010). Neural components underlying behavioral flexibility in human reversal learning. Cerebral Cortex, 20(8), 1843–1852. doi:10.1093/cercor/bhp247.

    Article  PubMed Central  PubMed  Google Scholar 

  • Goldsmith, T. R., & LeBlanc, L. A. (2004). Use of technology in interventions for children with autism. Journal of Early and Intensive Behavior Intervention, 1(2), 166–178.

    Article  Google Scholar 

  • Heaton, R. K., Chelune, G. J., Talley, J. L., Kay, G. G., & Curtiss, G. (1993). Wisconsin card sort test manual: Revised and expanded. Odessa, FL: Psychological Assessment Resources.

    Google Scholar 

  • Hoyt, C. L., Blascovich, J., & Swinth, K. R. (2003). Social inhibition in immersive virtual environments. Presence: Teleoperators and Virtual Environments, 12(2), 183–195. doi:10.1162/105474603321640932.

    Article  Google Scholar 

  • Hume, K., Plavnick, J., & Odom, S. L. (2012). Promoting task accuracy and independence in students with autism across educational setting through the use of individual work systems. Journal of Autism and Developmental Disorders, 42(10), 2084–2099. doi:10.1007/s10803-012-1457-4.

    Article  PubMed  Google Scholar 

  • Kim, E. S., Berkovits, L. D., Bernier, E. P., Leyzberg, D., Shic, F., Paul, R., & Scassellati, B. (2013). Social robots as embedded reinforcers of social behavior in children with autism. Journal of Autism and Developmental Disorders, 43(5), 1038–1049. doi:10.1007/s10803-012-1645-2.

    Article  PubMed  Google Scholar 

  • Kim, E. S., Paul, R., Shic, F., & Scassellati, B. (2012). Bridging the research gap: Making HRI useful to individuals with autism. Journal of Human–Robot Interaction, 1(1), 24–56. doi:10.5898/JHRI.1.1.Kim.

    Google Scholar 

  • Kozima, H., Nakagawa, C., & Yano, H. (2003). Attention coupling as a prerequisite for social interaction. In Proceedings of the 12th IEEE international workshop robot and human interactive communication, 2003. ROMAN (pp. 109–114). IEEE.

  • Kozima, H., Nakagawa, C., & Yasuda, Y. (2007). Children–robot interaction: A pilot study in autism therapy. Progress in Brain Research, 164, 385–400. doi:10.1016/S0079-6123(07)64021-7.

    Article  PubMed  Google Scholar 

  • Lionello-DeNolf, K. M., McIlvane, W. J., Canovas, D. S., De Souza, D. G., & Barros, R. S. (2008). Reversal learning set and functional equivalence in children with and without autism. The Psychological Record, 58(1), 15–36.

    PubMed Central  PubMed  Google Scholar 

  • Lord, C., Risi, S., Lambrecht, L., Cook, E. H., Jr, Leventhal, B. L., DiLavore, P. C., & Rutter, M. (2000). The autism diagnostic observation schedule—generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30(3), 205–223. doi:10.1023/A:1005592401947.

    Article  PubMed  Google Scholar 

  • Moore, M., & Calvert, S. (2000). Brief report—Vocabulary acquisition for children with autism: Teacher or computer instruction. Journal of Autism and Developmental Disorders, 30(4), 359–362. doi:10.1023/A:1005535602064.

    Article  PubMed  Google Scholar 

  • Odom, S. L., Collet-Klingenberg, L., Rogers, S. J., & Hatton, D. D. (2010). Evidence-based practices in interventions for children and youth with autism spectrum disorders. Preventing School Failure: Alternative Education for Children and Youth, 54(4), 275–282. doi:10.1080/10459881003785506.

    Article  Google Scholar 

  • Ozonoff, S., Pennington, B. F., & Rogers, S. J. (1991). Executive function deficits in high-functioning autistic individuals: Relationship to theory of mind. Journal of Child Psychology and Psychiatry, 32(7), 1081–1105. doi:10.1111/j.1469-7610.1991.tb00351.x.

    Article  PubMed  Google Scholar 

  • Panerai, S., Tasca, D., Ferri, R., Genitori D’Arrigo, V., & Elia, M. (2014). Executive functions and adaptive behaviour in autism spectrum disorders with and without intellectual disability. Psychiatry Journal, 1, 1–11. doi:10.1155/2014/941809.

    Article  Google Scholar 

  • Park, S., & Catrambone, R. (2007). Social facilitation effects of virtual humans. Human Factors: The Journal of the Human Factors and Ergonomics Society, 49(6), 1054–1060. doi:10.1518/001872007X249910.

    Article  Google Scholar 

  • Pop, C., Pintea, S., Vanderborght, B., & David, D. (2014). Enhancing play skills, engagement and social skills in a play task in ASD children by using robot-based interventions: A pilot study. Interaction Studies, 15(2), 292–320.

    Article  Google Scholar 

  • Pop, C. A., Simut, R. E., Pintea, S., Saldien, J., Rusu, A. S., Vanderfaeillie, J., et al. (2013). Social robots vs. computer display: Does the way social stories are delivered make a difference for their effectiveness on ASD children? Journal of Educational Computing Research, 49(3), 381–401. doi:10.2190/EC.49.3.f.

    Article  Google Scholar 

  • Quirmbach, L. M., Lincoln, A. J., Feinberg-Gizzo, M. J., Ingersoll, B. R., & Andrews, S. M. (2009). Social stories: Mechanisms of effectiveness in increasing game play skills in children diagnosed with autism spectrum disorder using a pretest posttest repeated measures randomized control group design. Journal of Autism and Developmental Disorders, 39(2), 299–321. doi:10.1007/s10803-008-0628-9.

    Article  PubMed  Google Scholar 

  • Rickenberg, R., & Reeves, B. (2000). The effects of animated characters on anxiety, task performance, and evaluations of user interfaces. In Proceedings of the SIGCHI conference on human factors in computing systems (pp. 49–56). ACM.

  • Ricks, D. J., & Colton, M. B. (2010). Trends and considerations in robot-assisted autism therapy. In 2010 IEEE international conference robotics and automation (ICRA) (pp. 4354–4359). IEEE.

  • Riether, N., Hegel, F., Wrede, B., & Horstmann, G. (2012, March). Social facilitation with social robots? In 2012 7th ACM/IEEE international conference on humanrobot interaction (HRI) (pp. 41–47). IEEE.

  • Robins, B., Dautenhahn, K., & Dubowski, J. (2006). Does appearance matter in the interaction of children with autism with a humanoid robot? Interaction Studies, 7(3), 509–542. doi:10.1075/is.7.3.16rob.

    Article  Google Scholar 

  • Robins, B., Dautenhahn, K., Te Boekhorst, R., & Billard, A. (2005). Robotic assistants in therapy and education of children with autism: Can a small humanoid robot help encourage social interaction skills? Universal Access in the Information Society, 4(2), 105–120. doi:10.1007/s10209-005-0116-3.

    Article  Google Scholar 

  • Robins, B., Dickerson, P., Stribling, P., & Dautenhahn, K. (2004). Robot-mediated joint attention in children with autism: A case study in robot–human interaction. Interaction Studies, 5(2), 161–198. doi:10.1075/is.5.2.02rob.

    Article  Google Scholar 

  • Robinson, S., Goddard, L., Dritschel, B., Wisley, M., & Howlin, P. (2009). Executive functions in children with autism spectrum disorders. Brain and Cognition, 71(3), 362–368.

  • Rolls, E. T. (1999). The brain and emotion. New York, NY: Oxford University Press.

    Google Scholar 

  • Scassellati, B. (2007). How social robots will help us to diagnose, treat, and understand autism. Robotics Research, 28, 552–563. doi:10.1007/978-3-540-48113-3_47.

  • Sloetjes, H., & Wittenburg, P. (2008). Annotation by category—ELAN and ISO DCR. In Proceedings of the 6th international conference on language resources and evaluation (LREC 2008). ELDA.

  • Solomon, M., Smith, A. C., Frank, M. J., Ly, S., & Carter, C. S. (2011). Probabilistic reinforcement learning in adults with autism spectrum disorders. Autism Research, 4(2), 109–120. doi:10.1002/aur.177.

    Article  PubMed  Google Scholar 

  • Stanton, C. M., Kahn, P. H., Severson, R. L., Ruckert, J. H., & Gill, B. T. (2008). Robotic animals might aid in the social development of children with autism. In 3rd ACM/IEEE International Conference humanrobot interaction (HRI) (pp. 271–278). IEEE.

  • Tapus, A., Peca, A., Aly, A., Pop, C., Jisa, L., Pintea, S., et al. (2012). Children with autism social engagement in interaction with Nao, an imitative robot: A series of single case experiments. Interaction Studies, 13(3), 315–347. doi:10.1075/is.13.3.01tap.

    Article  Google Scholar 

  • Van Eylen, L., Boets, B., Steyaert, J., Evers, K., Wagemans, J., & Noens, I. (2011). Cognitive flexibility in autism spectrum disorder: Explaining the inconsistencies? Research in Autism Spectrum Disorders, 5(4), 1390–1401. doi:10.1016/j.rasd.2011.01.025.

    Article  Google Scholar 

  • Vanderborght, B., Simut, R., Saldien, J., Pop, C., Rusu, A. S., Pintea, S., et al. (2012). Using the social robot probo as a social story telling agent for children with ASD. Interaction Studies, 13(3), 348–372. doi:10.1075/is.13.3.02van.

    Article  Google Scholar 

  • Zanbaka, C. A., Ulinski, A. C., Goolkasian, P., & Hodges, L. F. (2007). Social responses to virtual humans: Implications for future interface design. In Proceedings of the SIGCHI conference on human factors in computing systems (pp. 1561–1570). ACM.

Download references

Acknowledgments

This work has been supported by CNCSIS-Bucharest, Romania Project PN-IIIDPCE-2011-3-0484 Exploring Robot-assisted therapy for children with ASD (Bram Vanderborght’s contribution) and EU-FP7 ICT-2013.2.1 DREAM: Development of Robot-Enhanced therapy for children with AutisM spectrum disorder.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina A. Costescu.

Additional information

Cristina A. Costescu and Daniel O. David have contributed equally. Cristina A. Costescu contributed to the writing of the manuscript, design, data collection, analysis, and interpretation. Daniel O. David contributed to the writing of the manuscript, design, data analysis and interpretation. Bram Vanderborght contributed to the writing of the manuscript, data interpretation, and consulting about the use of the robot in the psychological procedure.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costescu, C.A., Vanderborght, B. & David, D.O. Reversal Learning Task in Children with Autism Spectrum Disorder: A Robot-Based Approach. J Autism Dev Disord 45, 3715–3725 (2015). https://doi.org/10.1007/s10803-014-2319-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10803-014-2319-z

Keywords

Navigation