Skip to main content
Log in

The generalized lifting property of Bruhat intervals

  • Published:
Journal of Algebraic Combinatorics Aims and scope Submit manuscript

Abstract

In Tsukerman and Williams (Adv Math 285: 766–810, 2015), it is shown that every Bruhat interval of the symmetric group satisfies the so-called generalized lifting property. In this paper, we show that a Coxeter group satisfies this property if and only if it is finite and simply-laced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Björner, A., Brenti, F.: Combinatorics of Coxeter Groups. Springer, Berlin (2005)

    MATH  Google Scholar 

  2. Borel, A., De Siebenthal, J.: Les sous-groupes fermés de rang maximum des groupes de Lie clos. Comment. Math. Helv. 23, 200–221 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brenti, F., Caselli, F., Marietti, M.: Special matchings and Kazhdan–Lusztig polynomials. Adv. Math. 202, 555–601 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brown, K.: Buildings. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  5. Delanoy, E.: Combinatorial invariance of Kazhdan–Lusztig polynomials on intervals starting from the identity. J. Algebraic Comb. 24, 437–463 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dynkin, E.B.: Semisimple subalgebras of semisimple Lie algebras. Am. Math. Soc. Trans. 2(6), 111–244 (1957)

    MATH  Google Scholar 

  7. du Cloux, F.: An abstract model for Bruhat intervals. Eur. J. Comb. 21, 197–222 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dyer, M.J.: On the ”Bruhat graph” of a Coxeter system. Comp. Math. 78, 185–191 (1991)

    MathSciNet  MATH  Google Scholar 

  9. Dyer, M.J., Lehrer, G.I.: Reflection subgroups of finite and affine Weyl groups. Trans. Am. Math. Soc. 363, 5971–6005 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Humphreys, J.E.: Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  11. Kodama, Y., Williams, L.: The full Kostant–Toda hierarchy on the positive flag variety. Commun. Math. Phys. 335, 247–283 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Tsukerman, E., Williams, L.: Bruhat interval polytopes. Adv. Math. 285, 766–810 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

A huge gratitude goes to an anonymous referee who gave us the key idea for the proof of Theorem 3.5 and Proposition 3.6 avoiding the use of the classification theorem for finite Coxeter groups that was needed in a previous version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Caselli.

Additional information

Paolo Sentinelli was supported by MIUR grant FIRB-RBFR12RA9W-002 “Perspectives in Lie theory”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caselli, F., Sentinelli, P. The generalized lifting property of Bruhat intervals. J Algebr Comb 45, 687–700 (2017). https://doi.org/10.1007/s10801-016-0721-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10801-016-0721-7

Keywords

Navigation