Skip to main content
Log in

\(G(\ell ,k,d)\)-modules via groupoids

  • Published:
Journal of Algebraic Combinatorics Aims and scope Submit manuscript

Abstract

In this note, we describe a seemingly new approach to the complex representation theory of the wreath product \(G\wr S_d\), where G is a finite abelian group. The approach is motivated by an appropriate version of Schur–Weyl duality. We construct a combinatorially defined groupoid in which all endomorphism algebras are direct products of symmetric groups and prove that the groupoid algebra is isomorphic to the group algebra of \(G\wr S_d\). This directly implies a classification of simple modules. As an application, we get a Gelfand model for \(G\wr S_d\) from the classical involutive Gelfand model for the symmetric group. We describe the Schur–Weyl duality which motivates our approach and relate it to various Schur–Weyl dualities in the literature. Finally, we discuss an extension of these methods to all complex reflection groups of type \(G(\ell ,k,d)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adin, R., Postnikov, A., Roichman, Y.: Combinatorial Gelfand models. J. Algebra 320(3), 1311–1325 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Adin, R., Postnikov, A., Roichman, Y.: A Gelfand model for wreath products. Isr. J. Math. 179, 381–402 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ariki, S., Terasoma, T., Yamada, H.: Schur–Weyl reciprocity for the Hecke algebra of \(({\mathbb{Z}}/r{\mathbb{Z}})\wr S_n\). J. Algebra 178(2), 374–390 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bao, H., Wang, W.: A new approach to Kazhdan-Lusztig theory of type B via quantum symmetric pairs. arXiv:1310.0103

  5. Can, H.: Representations of the generalized symmetric groups. Beiträge Algebra Geom. 37(2), 289–307 (1996)

    MATH  MathSciNet  Google Scholar 

  6. Caselli, F., Fulci, R.: Refined Gelfand models for wreath products. Eur. J. Comb. 32(2), 198–216 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Caselli, F., Marberg, E.: Isomorphisms, automorphisms, and generalized involution models of projective reflection groups. Isr. J. Math. 199(1), 433–483 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ceccherini-Silberstein, T., Scarabotti, F., Tolli, F.: Representation theory of wreath products of finite groups. J. Math. Sci. 156(1), 44–55 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ehrig, M., Stroppel, C.: Nazarov–Wenzl algebras, coideal subalgebras and categorified skew Howe duality. Preprint arXiv:1310.1972

  10. Ehrig, M., Stroppel, C.: 2-row Springer fibres and Khovanov diagram algebras for type D. Can. J. Math. Preprint arXiv:1209.49989 (to appear)

  11. Ganyushkin, O., Mazorchuk, V.: Classical finite transformation semigroups. An introduction, Algebra and Applications, 9. Springer, (2009)

  12. Goodman, R., Wallach, N.: Symmetry, Representations, and Invariants. Graduate Texts in Mathematics, vol. 255. Springer, Berlin (2009)

  13. Grood, C.: A Specht module analog for the rook monoid. Electron. J. Combin. 9(1) Research Paper 2 (2002)

  14. Halverson, T., Ram, A.: \(q\)-Rook monoid algebras, Hecke algebras, and Schur–Weyl duality. J. Math. Sci. 121(3), 2419–2436 (2004)

    Article  MathSciNet  Google Scholar 

  15. Halverson, T., Reeks, M.: Gelfand models for diagram algebras. J. Algebraic Comb. 41(2), 229–255 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hu, J.: Schur–Weyl reciprocity between quantum groups and Hecke algebras of type \(G(r,1, n)\). Math. Z. 238(3), 505–521 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hu, J., Shoji, T.: Schur–Weyl reciprocity between quantum groups and Hecke algebras of type \(G(p, p, n)\). J. Algebra 298(1), 215–237 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Inglis, N., Richardson, R., Saxl, J.: An explicit model for the complex representations of \(S_n\). Arch. Math. (Basel) 54(3), 258–259 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  19. James, G., Kerber, A.: The Representation Theory of the Symmetric Group. Encyclopedia of Mathematics and Its Applications, vol. 16. Addison-Wesley, Reading (1981)

  20. Kerber, A.: Zur Darstellungstheorie von Kranzprodukten. Can. J. Math. 20, 665–672 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kraft, H., Procesi, C.: Classical invariant theory, a primer. Manuscript (1996). Available at: http://jones.math.unibas.ch/~kraft/Papers/KP-Primer

  22. Kudryavtseva, G., Mazorchuk, V.: Combinatorial Gelfand models for some semigroups and \(q\)-rook monoid algebras. Proc. Edinb. Math. Soc. (2) 52(3), 707–718 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kudryavtseva, G., Mazorchuk, V.: On presentations of Brauer-type monoids. Cent. Eur. J. Math. 4(3), 413–434 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. Marin, I.: Branching properties for the groups \(G(de, e, r)\). J. Algebra 323(4), 966–982 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  25. Mazorchuk, V.: Combinatorial Gelfand models for semisimple diagram algebras. Milan J. Math. 81(2), 385–396 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  26. Moon, D.: A diagram realization of complex reflection groups and Schur–Weyl dualities. Trends in mathematics. Inf. Center Math. Sci. 8(2), 119–127 (2005)

    Google Scholar 

  27. Osima, M.: On the representations of the generalized symmetric group. Math. J. Okayama Univ. 4, 39–56 (1954)

    MATH  MathSciNet  Google Scholar 

  28. Regev, A.: Double centralizing theorems for wreath product. Contemp. Math. 34, 67–72 (1984)

    Article  MathSciNet  Google Scholar 

  29. Saeed-Ul-Islam, M.: Irreducible representations of the generalized symmetric group \(B_n^m\). Glasgow Math. J. 29(1), 1–6 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  30. Sagan, B.: The Symmetric Group. Representations, Combinatorial Algorithms, and Symmetric Functions, 2nd edn. Graduate Texts in Mathematics, vol. 203. Springer, Berlin (2001)

  31. Sakamoto, M., Shoji, T.: Schur–Weyl reciprocity for Ariki–Koike algebras. J. Algebra 221(1), 293–314 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  32. Sartori, A., Stroppel, C.: Coidal subalgebras: PBW theorem and representation theory I. Preprint

  33. Schur, I.: Über die rationalen Darstellungen der allgemeinen linearen Gruppe, pp. 58–75. Sitzungsberichte Akad, Berlin (1927). Reprinted in: I. Schur. Gesammelte Abhandlungen III, pp. 68–85. Springer, Berlin (1973)

  34. Schur, I.: Über eine Klasse von Matrizen die sich einer gegebenen Matrix zuordnen lassen. Thesis, Berlin (1901). Reprinted in: I. Schur, Gesammelte Abhandlungen I, pp. 1–70. Springer, Berlin (1973)

  35. Serre, J.-P.: Linear Representations of Finite Groups. Graduate Texts in Mathematics, vol. 42. Springer, Berlin (1977)

  36. Shoji, T.: A Frobenius formula for the characters of Ariki–Koike algebras. J. Algebra 226(2), 818–856 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  37. Solomon, L.: Representations of the rook monoid. J. Algebra 256(2), 309–342 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  38. Specht, W.: Eine Verallgemeinerung der symmetrischen Gruppe. Berl. Semin. 1, 1–32 (1932)

    Google Scholar 

  39. Weyl, H.: The Classical Groups: Their Invariants and Representations. Princeton University Press, Princeton (1939)

    Google Scholar 

Download references

Acknowledgments

An essential part of the research was done during the visit of both authors to the Max Planck Institute for Mathematics in Bonn. We gratefully acknowledge hospitality and support by the MPIM. For the first author, the research was partially supported by the Swedish Research Council, Knut and Alice Wallenbergs Stiftelse, and the Royal Swedish Academy of Sciences. We thank Daniel Tubbenhauer and Stuart Margolis for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volodymyr Mazorchuk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazorchuk, V., Stroppel, C. \(G(\ell ,k,d)\)-modules via groupoids. J Algebr Comb 43, 11–32 (2016). https://doi.org/10.1007/s10801-015-0623-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10801-015-0623-0

Keywords

Navigation