Skip to main content
Log in

Photo-electrochemical characterization of CH3NH3PbI3 Perovskite deposited on ZnO and TiO2 mesoporous structures during its dynamic restoration

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Methylammonium lead iodide, CH3NH3PbI3, perovskite solar cells are the subject of substantial research due to their high efficiency and inexpensive fabrication. The implementation of liquid electrolyte offers fast charge transport in the device. However, the hygroscopic nature of methylammonium iodide poses a challenge in contact with it. Here, we presented electrochemical characterization results of a perovskite-based three-probe device with a novel liquid electrolyte. This liquid electrolyte contained methylammonium iodide (MAI) in addition to the ionic carriers (lithium perchlorate) in isopropanol. MAI restored the degraded part of perovskite material dynamically. The X-ray diffraction analysis confirmed the constructive effect of this electrolyte on the morphology of perovskite crystalline structure. The performance of perovskite material deposited on two different mesoscopic structures, ZnO and TiO2, as active electrode in contact with this electrolyte was compared. The electrode coated with perovskite material on TiO2 demonstrated superior photovoltaic properties (i.e., higher photocurrent and photovoltage) compared to ZnO back contact. A detail electrochemical impedance spectroscopy study of both samples, in dark and light, suggested faster charge transport for the electrode with the TiO2 back contact. The consistency with the electrochemical results also indicated the stability of the perovskite material. Results from this study encourage making electrochemical perovskite solar cells with TiO2 as the electron collector with MAI-based electrolyte.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131(17):6050–6051

    Article  CAS  Google Scholar 

  2. Hashmi G, Miettunen K, Peltola T, Halme J, Asghar I, Aitola K, Toivola M, Lund P (2011) Review of materials and manufacturing options for large area flexible dye solar cells. Renew Sustain Energy Rev 15(8):3717–3732

    Article  CAS  Google Scholar 

  3. Saliba M, Orlandi S, Matsui T, Aghazada S, Cavazzini M, Correa-Baena J-P, Gao P, Scopelliti R, Mosconi E, Dahmen K-HD, Angelis FD, Abate A, Hagfeldt A, Pozzi G, Graetzel M, Nazeeruddin MK (2016) A molecularly engineered hole-transporting material for efficient perovskite solar cells. Nature. Energy 1:15017

    CAS  Google Scholar 

  4. Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I, Grätzel M (2015) Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350(6263):944–948

    Article  CAS  Google Scholar 

  5. Zhou Y, Chen P, Liu S, Wang G, Jiang H, Zhan S (2015) Thermal stress analysis of mesoporous perovskite solar cell by finite element method In: Electronic Packaging Technology (ICEPT), 2015 16th International Conference on. IEEE, pp 205–209

  6. Noel NK, Stranks SD, Abate A, Wehrenfennig C, Guarnera S, Haghighirad A-A, Sadhanala A, Eperon GE, Pathak SK, Johnston MB (2014) Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ Sci 7(9):3061–3068

    Article  CAS  Google Scholar 

  7. Momeni MM (2016) Dye-sensitized solar cell and photocatalytic performance of nanocomposite photocatalyst prepared by electrochemical anodization. Bullet Mater Sci 39(6):1389–1395

    Article  CAS  Google Scholar 

  8. Momeni M, Ghayeb Y, Ghonchegi Z (2016) Photocatalytic properties of Cr–TiO2 nanocomposite photoelectrodes produced by electrochemical anodisation of titanium. Surf Eng 32 (7):520–525

    Article  CAS  Google Scholar 

  9. Momeni MM, Ghayeb Y (2016) Photoinduced deposition of gold nanoparticles on TiO2–WO3 nanotube films as efficient photoanodes for solar water splitting. Appl Phys A 122(6):1–10

    Article  CAS  Google Scholar 

  10. Momeni MM, Ghayeb Y (2016) Cobalt modified tungsten–titania nanotube composite photoanodes for photoelectrochemical solar water splitting. J Mater Sci 27(4):3318–3327

    CAS  Google Scholar 

  11. Momeni MM, Ghayeb Y (2016) Fabrication, characterization and photoelectrochemical performance of chromium-sensitized titania nanotubes as efficient photoanodes for solar water splitting. J Solid State Electrochem 20(3):683–689

    Article  CAS  Google Scholar 

  12. Ghayeb Y, Momeni MM (2016) Solar water-splitting using palladium modified tungsten trioxide-titania nanotube photocatalysts. J Mater Sci 27(2):1805–1811

    CAS  Google Scholar 

  13. Momeni MM, Ghayeb Y, Ghonchegi Z (2015) Fabrication and characterization of copper doped TiO 2 nanotube arrays by in situ electrochemical method as efficient visible-light photocatalyst. Ceram Int 41(7):8735–8741

    Article  CAS  Google Scholar 

  14. Momeni MM, Ghayeb Y (2015) Fabrication, characterization and photoelectrochemical behavior of Fe–TiO 2 nanotubes composite photoanodes for solar water splitting. J Electroanal Chem 751:43–48

    Article  CAS  Google Scholar 

  15. Momeni MM, Ghayeb Y (2015) Photoelectrochemical water splitting on chromium-doped titanium dioxide nanotube photoanodes prepared by single-step anodizing. J Alloys Compd 637:393–400

    Article  CAS  Google Scholar 

  16. Momeni MM, Ghayeb Y (2015) Visible light-driven photoelectrochemical water splitting on ZnO–TiO2 heterogeneous nanotube photoanodes. J Appl Electrochem 45(6):557–566

    Article  CAS  Google Scholar 

  17. Momeni MM, Ghayeb Y, Davarzadeh M (2015) Single-step electrochemical anodization for synthesis of hierarchical WO3–TiO2 nanotube arrays on titanium foil as a good photoanode for water splitting with visible light. J Electroanal Chem 739:149–155

    Article  CAS  Google Scholar 

  18. Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107):643–647

    Article  CAS  Google Scholar 

  19. Burschka J, Pellet N, Moon S-J, Humphry-Baker R, Gao P, Nazeeruddin MK, Grätzel M (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458):316–319

    Article  CAS  Google Scholar 

  20. Ponseca CS Jr, Savenije TJ, Abdellah M, Zheng K, Yartsev A, Pascher Tr, Harlang T, Chabera P, Pullerits T, Stepanov A (2014) Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination. J Am Chem Soc 136(14):5189–5192

    Article  CAS  Google Scholar 

  21. Stoumpos CC, Malliakas CD, Kanatzidis MG (2013) Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg Chem 52(15):9019–9038

    Article  CAS  Google Scholar 

  22. Zhao Y, Zhu K (2016) Organic–inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem Soc Rev 45(3):655–689

    Article  CAS  Google Scholar 

  23. Liu M, Johnston MB, Snaith HJ (2013) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467):395–398

    Article  CAS  Google Scholar 

  24. Zhao Y, Zhu K (2015) Three-step sequential solution deposition of PbI 2-free CH 3 NH 3 PbI 3 perovskite. J Mater Chem A 3(17):9086–9091

    Article  CAS  Google Scholar 

  25. Islam MS (2000) Ionic transport in ABO3 perovskite oxides: a computer modelling tour. J Mater Chem 10(4):1027–1038

    Article  CAS  Google Scholar 

  26. Snaith HJ (2013) Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J Phys Chem Lett 4(21):3623–3630

    Article  CAS  Google Scholar 

  27. Dualeh A, Moehl T, Tétreault N, Teuscher J, Gao P, Nazeeruddin MK, Grätzel M (2013) Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. ACS Nano 8(1):362–373

    Article  Google Scholar 

  28. Ryu S, Noh JH, Jeon NJ, Kim YC, Yang WS, Seo J, Seok SI (2014) Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor. Energy Environ Sci 7(8):2614–2618

    Article  CAS  Google Scholar 

  29. Mueller DN, Machala ML, Bluhm H, Chueh WC (2015) Redox activity of surface oxygen anions in oxygen-deficient perovskite oxides during electrochemical reactions. Nat Commun 6:6097.

    Article  CAS  Google Scholar 

  30. Kim H-S, Lee C-R, Im J-H, Lee K-B, Moehl T, Marchioro A, Moon S-J, Humphry-Baker R, Yum J-H, Moser JE (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2:591

    Google Scholar 

  31. Liang K, Mitzi DB, Prikas MT (1998) Synthesis and characterization of organic-inorganic perovskite thin films prepared using a versatile two-step dipping technique. Chem Mater 10(1):403–411

    Article  CAS  Google Scholar 

  32. Eperon GE, Habisreutinger SN, Leijtens T, Bruijnaers BJ, van Franeker JJ, deQuilettes DW, Pathak S, Sutton RJ, Grancini G, Ginger DS (2015) The importance of moisture in hybrid lead halide perovskite thin film fabrication. ACS nano 9(9):9380–9393

    Article  CAS  Google Scholar 

  33. Xu J, Ku Z, Zhang Y, Chao D, Fan HJ (2016) Integrated Photo-Supercapacitor based on PEDOT Modified Printable Perovskite Solar Cell. Adv Mater Technol 1:1600074.

    Article  Google Scholar 

  34. Shugar GJ (1981) Chemical technicians’ ready reference handbook. McGraw-Hill, New York

    Google Scholar 

  35. Ebrahimi H, Yaghoubi H, Giammattei F, Takshi A (2014) Electrochemical detection of piezoelectric effect from misaligned zinc oxide nanowires grown on a flexible electrode. Electrochim Acta 134:435–441

    Article  CAS  Google Scholar 

  36. Bakhshi S, Collins S, Ferekides C, Takshi A (2013) Study the effect of TiO2 annealing and TiCl4 treatment on the performance of dye-sensitized solar cells. In: 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC). IEEE, pp 2694–2697

  37. Son D-Y, Im J-H, Kim H-S, Park N-G (2014) 11% efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system. J Phys Chem C 118(30):16567–16573

    Article  CAS  Google Scholar 

  38. Banyamin ZY, Kelly PJ, West G, Boardman J (2014) Electrical and optical properties of fluorine doped tin oxide thin films prepared by magnetron sputtering. Coatings 4 (4):732–746

    Article  Google Scholar 

  39. Oku T (2015) Crystal structures of CH3NH3PbI3 and related perovskite compounds used for solar cells. In: Kosyachenko LA (ed) Solar cells-new approaches and reviews, InTech, Rijeka, p 25

    Google Scholar 

  40. Gao X, Li J, Baker J, Hou Y, Guan D, Chen J, Yuan C (2014) Enhanced photovoltaic performance of perovskite CH3 NH3 PbI3 solar cells with freestanding TiO2 nanotube array films. Chem Commun (Camb) 50(48):6368–6371

    Article  CAS  Google Scholar 

  41. Xiao Z, Yuan Y, Wang Q, Shao Y, Bai Y, Deng Y, Dong Q, Hu M, Bi C, Huang J (2016) Thin-film semiconductor perspective of organometal trihalide perovskite materials for high-efficiency solar cells. Mater Sci Eng 101:1–38

    Article  Google Scholar 

  42. Ogomi Y, Morita A, Tsukamoto S, Saitho T, Fujikawa N, Shen Q, Toyoda T, Yoshino K, Pandey SS, Ma T (2014) CH3NH3Sn x Pb (1–x) I3 Perovskite solar cells covering up to 1060 nm. J Phys Chem Lett 5(6):1004–1011

    Article  CAS  Google Scholar 

  43. Garcia BB, Feaver AM, Zhang Q, Champion RD, Cao G, Fister TT, Nagle KP, Seidler GT (2008) Effect of pore morphology on the electrochemical properties of electric double layer carbon cryogel supercapacitors. J Appl Phys 104(1):014305

    Article  Google Scholar 

  44. Chueh C-C, Li C-Z, Jen AK-Y (2015) Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells. Energy Environ Sci 8(4):1160–1189

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Science Foundation (NSF1400017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Takshi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 286 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimi, F., Bebeau, J., Matar, O. et al. Photo-electrochemical characterization of CH3NH3PbI3 Perovskite deposited on ZnO and TiO2 mesoporous structures during its dynamic restoration. J Appl Electrochem 47, 305–313 (2017). https://doi.org/10.1007/s10800-017-1044-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-017-1044-7

Keywords

Navigation