Skip to main content
Log in

Electrodeposition of 4,4′-di-tert-butylbiphenyl peroxide from the anodic oxidation of p-tert-butylphenol in an alkaline acetonitrile solution

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

An Erratum to this article was published on 18 March 2017

Abstract

The electrogeneration of pure 4,4′-di-tert-butylbiphenyl peroxide as an electrodeposit could be achieved on a platinum electrode through the anodic oxidation of p-tert butylphenol in the presence of Lutidine, in addition to several soluble oligomers. The electrochemical and theoretical studies have shown that the favored coupling reaction corresponds to the O–O bond, albeit it is generally being considered unstable. Without the strong base, a mixture of trimer, tetramer and pentamer was deposited. The peroxide product presents a different electroactivity to that of the phenolic compound, with the appearance of a redox process involving cathodic and anodic symmetrical peaks at −0.10/0.15 V versus SCE, which indicates the preference of the polymer to adhere onto the electrode surface. The thermal degradation has also been analyzed. Quantum-chemical calculations reveal the reason for the oxygen–oxygen coupling.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1

Similar content being viewed by others

References

  1. Wilson GO, Henderson JW, Caruso MM, Blaiszik BJ, Mcintire PJ, Sottos NR, White SR, Moore JS (2010) Evaluation of peroxide initiators for radical polymerization-based self-healing applications. J Polym Sci Part A 48:2698–2708

    Article  CAS  Google Scholar 

  2. Denisov ET, Denisova TG, Pokidova TS (2003) Handbook of free radical initiators. Wiley, New York

    Book  Google Scholar 

  3. Opsenica DM, Solaja BA (2009) Antimalarial peroxides. J Serb Chem Soc 74:1155–1193

    Article  CAS  Google Scholar 

  4. Rao PS, Sathyanarayana DN, Palaniappan S (2002) Polymerization of aniline in an organic peroxide system by the inverted emulsion process. Macromolecules 35:4988–4996

    Article  CAS  Google Scholar 

  5. Terentev AO, Yaremenko IA, Chernyshev VV, Dembitsky VM, Nikishin GI (2012) Selective synthesis of cyclic peroxides from triketones and H2O2. J Org Chem 77:1833–1842

    Article  CAS  Google Scholar 

  6. Swern D (1971) Organic peroxides, vol 2. Wiley, New York

    Google Scholar 

  7. Opsenica D, Pocsfalvi G, Milhous WK, Solaja BA (2002) J Serb Chem Soc 67:465–471

    Article  CAS  Google Scholar 

  8. Rieche A, Bischoff C, Prescher D (1964) Chem Ber 97: 3071–3075

    Article  CAS  Google Scholar 

  9. Sheldon RA (1983) In: Patai S (ed) The chemistry of peroxides, vol 1. Wiley, Chichester, 161–200

  10. Dussault PH, Lee IQ (1993) Peroxycarbenium-mediated C–C bond formation: synthesis of peroxides from monoperoxy ketals. J Am Chem Soc 115:6458–6459

    Article  CAS  Google Scholar 

  11. Boudenne JL, Cerclier O, Bianco P (1998) Voltammetric studies of the behavior of carbon black during phenol oxidation on Ti/Pt electrodes. J Electrochem Soc 145:2763–2768

    Article  CAS  Google Scholar 

  12. Richard JA, Whitson PE, Evans DH (1975) Electrochemical oxidation of 2,4,6-tri-tert-butylphenol. J Electroanal Chem 63:311–327

    Article  Google Scholar 

  13. Lapuente R, Cases F, Garcés P, Morallón E, Vázquez JL (1998) Avoltammetric and FTIR-ATR study of the electropolymerization of phenol on platinum electrodes in carbonate medium: influence of sulfide. J Electroanal Chem 451:163–171

    Article  CAS  Google Scholar 

  14. Boudenne JL, Cerclier O, Galéa J, Van der Vlist E (1996) Electrochemical oxidation of aqueous phenol at a carbon slurry electrode. Appl Catal Gen 143:185–202.

    Article  CAS  Google Scholar 

  15. Enache TA, Brett AMO (2011) Phenol and para-substituted phenolselectrochemical oxidation pathways. J Electroanal Chem 655:9–16

    Article  CAS  Google Scholar 

  16. Iotov PI, Kalcheva SV (1998) Mechanistic approach to the oxidation of phenol at a platinum/gold electrode in an acid medium. J Electroanal Chem 442:19–26

    Article  CAS  Google Scholar 

  17. Mengoli G, Musiani M (1987) An overview of phenol electropolymerization for metal protection. J Electrochem Soc 134:643C–652C

    Article  CAS  Google Scholar 

  18. Bruno F, Pham MC, Dubois JE (1977) Polaromicrotribometric study of polyphenylene oxide film formation on metal electrodes by electrolysis of disubstituted phenols. Electrochim Acta 22:451–457

    Article  CAS  Google Scholar 

  19. Pham MC, Lacaze PC, Dubois JE (1978) Obtaining thin films of “reactive polymers” on metal surfaces by electrochemical polymerization part I. Reactivity of functional groups in a carbonyl substituted polyphenylene oxide film. J Electroanal Chem 86:147–157

    Article  Google Scholar 

  20. Pham MC, Dubois JE, Lacaze PC (1979) Obtaining thin films of “reactive polymers” on metal surfaces by electrochemical polymerization: part II. Alcohol substituted polyphenylene oxide films. J Electroanal Chem 99:331–340

    Article  CAS  Google Scholar 

  21. Ferreira M, Varela H, Torresi RM, Filho GT (2006) Electrode passivation caused by polymerization of different phenolic compounds. Electrochim Acta 52:434–442

    Article  CAS  Google Scholar 

  22. Rolan A, Parker VD (1971) Anodic oxidation of phenolic compounds, part II, products and mechanism of the anodic oxidation of hindered phenols. J Chem Soc (C). doi:10.1039/J39710003214

    Google Scholar 

  23. Vermillion FJ, Pearl IA (1964) Anodic reactions of simple phenolic compounds. J Electrochem Soc 111:1392–1400

    Article  CAS  Google Scholar 

  24. Lyson P, Imrie C, Gouws S, Barton B, kruger E (2009) Bmim ionic liquids as media for the electrochemical oxidation of 2,6-di-t-butylphenol. J Appl Electrochem 39:1087–1095.

    Article  Google Scholar 

  25. Schafer HJ (1987) Oxidation of organic-compounds at the nickel-hydroxide electrode. Top Curr Chem 142:101–129

    Article  Google Scholar 

  26. Gattrell M, MacDougall B (1999) The anodic electrochemistry of pentachlorophenol. J Electrochem Soc 146:3335–3348

    Article  CAS  Google Scholar 

  27. Gattrell M, Kirk DW (1993) A Study of electrode passivation during aqueous phenol electrolysis. J Electrochem Soc 140:903–911

    Article  CAS  Google Scholar 

  28. Gattrell M, Kirk DW (1992) A Fourier Transform Infrared spectroscopy study of the passive film produced during aqueous acidic phenol electro-oxidation. J Electrochem Soc 139:2736–2744

    Article  CAS  Google Scholar 

  29. Wang J, Jiang M, Lu F (1998) Electrochemical quartz crystal microbalance investigation of surface fouling due to phenol oxidation. J Electroanal Chem 444:127–132

    Article  CAS  Google Scholar 

  30. Glarum SH, Marshall JH, Hellman MY, Taylor GN (1987) Characterization of polyphenylene oxide anodic films. J Electrochem Soc 134:81–84

    Article  CAS  Google Scholar 

  31. Taj S, Ahmed MF, Sankarapapavinasam S (1993) Electro-oxidative polymerization of m-chlorophenol and m-bromophenol. J Electroanal Chem 356:269–274

    Article  CAS  Google Scholar 

  32. Galtrell M, Kirk DW (1993) A Study of the oxidation of phenol at platinum and preoxidized platinum surfaces. J Electrochem Soc 140:1534–1540

    Article  Google Scholar 

  33. Kennedy B, Glidle A, Cunnane VJ (2007) A study of the oxidation and polymerisation of meta substituted phenol and aniline derivatives. J Electroanal Chem 608:22–30

    Article  CAS  Google Scholar 

  34. Bach RD, Ayala PY, Schlegel HB (1996) A reassessment of the bond dissociation energies of peroxides. J Am Chem Soc 118:12758–12765

    Article  CAS  Google Scholar 

  35. Andreescu S, Andreescu D, Sadik OA (2003) A new electrocatalytic mechanism for the oxidation of phenols at platinum electrodes. Electrochem Commun 5:681–688

    Article  CAS  Google Scholar 

  36. Malfoy B, Reynaud JA (1980) Electrochemical investigations of amino acids at solid electrodes: part II. Amino acids containing no sulfur atoms: tryptophan, tyrosine, histidine and derivatives. J Electroanal Chem 114:213–223

    Article  CAS  Google Scholar 

  37. Reinaud JA, Malfoy B, Bere A (1980) The electrochemical oxidation of three proteins: RNAase A, bovine serum albumin and concanavalin A at solid electrodes. J Electroanal Chem Interfacial Electrochem 116:595–606

    Article  Google Scholar 

  38. Besbes-Hentati S, Said H, Bouvet M (2007) Electrosynthesis and structural characterization of a novel aryl ether trimer. Electrochim Acta 52:4715–4723

    Article  CAS  Google Scholar 

  39. Besbes-Hentati S, Said H (2010) Prediction of the electrochemical oligomerization of p-tert-butyl anisole by analyses of the electrolyzed solution. Electrochim Acta 55:5636–5646

    Article  CAS  Google Scholar 

  40. Armarego WLF, Chai CLL (2003) Purification of laboratory chemicals, 5th edn. Butterworth Heinemann, Amsterdam, 85

    Google Scholar 

  41. Becke AD (1993) Density functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  42. Merrick JP, Moran D, Radom L (2007) An evaluation of harmonic vibrational frequency scale factors. J Phys Chem A 111:11683–11700

    Article  CAS  Google Scholar 

  43. Tomasi J, Persico M (1994) Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent. Chem Rev 94:2027–2094

    Article  CAS  Google Scholar 

  44. Tomasi J, Mennucci B, Cancès E (1999) The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM abinitio level. J Mol Struct 464:211–226

    Article  CAS  Google Scholar 

  45. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3094

    Article  CAS  Google Scholar 

  46. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA (2009) Gaussian Inc., Wallingford

  47. Limem SM, Besbes-Hentati S, Said H, Bouvet M (2011) From the electrochemical generation of calix[4]arenedihydroquinone to the electrodeposition of calix[4]arenediquinone–calix[4]arenedihydroquinone assembly. Electrochim Acta 58:372–382

    Article  Google Scholar 

  48. Socrates G (2001) Infrared and Raman characteristic group frequencies, 3rd edn. Wiley, New York 105

    Google Scholar 

  49. Lapuente R, Quijada C, Huerta F, Cases F, Vazquez JL (2003) X-Ray photoelectron spectroscopy study of the composition of polyphenol films formed on Pt by electropolymerisation of phenol in the presence of sulphide in carbonate medium. J Polym 35:911–919

    Article  CAS  Google Scholar 

  50. Carbone ME, Ciriello R, Guerrieri A, Salvi AM (2014) EQCM and XPS investigations on the redox switching of conducting poly(o-aminophenol) films electrosynthesized onto Pt substrates. Surf Interface Anal 46:1081–1085

    Article  CAS  Google Scholar 

  51. Zhang L, Wang PW (1996) Structural role of lead in lead silicate glasses derived from XPS spectra. J Non-Crist. Solids 194:129–134

    Article  Google Scholar 

  52. Pike RM, Cohen RA (1960) Organophosphorus polymers. I. Peroxide-initiated polymerization of diethyl and diisopropyl vinylphosphonate. J Polym Sci 44:531–538

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Tunisian Ministry of Higher Education and Research for its financial support as well as the King Saud University for its funding through the Research Group Project No RGP-VPP-243. They would also like to thank the Spanish Ministry of Economy and Competitiveness for its financial support and the STIs for the ERDF funds (MAT2013-42007-P) and the Generalitat Valenciana (PROMETEO2013/ 038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salma Besbes-Hentati.

Additional information

The original version of this article was revised: Figure 5 was updated in the article.

An erratum to this article is available at http://dx.doi.org/10.1007/s10800-017-1059-0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abidi, M., Derbel, N., Hkiri, R. et al. Electrodeposition of 4,4′-di-tert-butylbiphenyl peroxide from the anodic oxidation of p-tert-butylphenol in an alkaline acetonitrile solution. J Appl Electrochem 47, 507–516 (2017). https://doi.org/10.1007/s10800-016-1041-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-016-1041-2

Keywords

Navigation