Skip to main content
Log in

Nanostructured manganese oxide and manganese oxide/polyethylenedioxythiophene rods electrodeposited onto nickel foam for supercapacitor applications

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A template-free anodic electrodeposition process was utilized to deposit Mn oxide and Mn oxide/PEDOT rods onto Ni foam substrates for use as supercapacitor electrodes. Deposit morphology was optimized by varying deposition conditions and by characterization using electron microscopy. The deposits were poorly crystalline, and electron diffraction patterns could be indexed to either a cubic spinel structure (Mn3O4) or a hexagonal birnessite structure (MnO2). The deposits had an overall oxidation state of Mn3+ before cycling and Mn4+ after 500 cycles. The maximum capacitance values for deposits with and without PEDOT were 159 and 120 F g−1 (500 and 290 mF cm−2), respectively, measured using CV at a scan rate of 5 mV s−1. The addition of the PEDOT coating reduced Mn oxide dissolution during cycling up to 500 cycles. Uncoated samples showed an increase in capacitance during cycling, which is attributed to the oxidation state change and the redeposition of Mn oxide in areas of high conductivity. Capacitance retentions after 2000 cycles were 46 and 120 % for deposits with and without PEDOT, respectively.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  2. Ko R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochem Commun 45:2483–2498

    Google Scholar 

  3. Wei W, Cui X, Chen W, Ivey DG (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40:1697–1721

    Article  CAS  Google Scholar 

  4. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  CAS  Google Scholar 

  5. Wei W, Cui X, Mao X, Chen W, Ivey DG (2011) Morphology evolution in anodically electrodeposited manganese oxide nanostructures for electrochemical supercapacitor applications—effect of supersaturation ratio. Electrochim Acta 56:1619–1628

    Article  CAS  Google Scholar 

  6. Liu C, Li F, Ma L-P, Cheng H-M (2010) Advanced materials for energy storage. Adv Mater 22:E28–E62

    Article  CAS  Google Scholar 

  7. Toupin M, Brousse T, Be D (2004) Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem Mater 16:3184–3190

    Article  CAS  Google Scholar 

  8. Zheng JP, Cygan PJ, Jow TR (1995) Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J Electrochem Soc 142:2699–2703

    Article  CAS  Google Scholar 

  9. Hu CC, Chen W-C, Chang K-H (2004) How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors. J Electrochem Soc 151:A281–A290

    Article  CAS  Google Scholar 

  10. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531

    Article  CAS  Google Scholar 

  11. Conway BE, Birss V, Wojtowicz J (1997) The role and utilization of pseudocapacitance for energy storage by supercapacitors. J Power Sources 66:1–14

    Article  CAS  Google Scholar 

  12. Conway BE (1991) Transition from ‘supercapacitor’ to ‘battery’ behavior in electrochemical energy storage. J Electrochem Soc 138:1539–1548

    Article  CAS  Google Scholar 

  13. Ghodbane O, Pascal JL, Favier F (2009) Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. ACS Appl Mater Interfaces 1:1130–1139

    Article  CAS  Google Scholar 

  14. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502

    Article  CAS  Google Scholar 

  15. Snook G, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1–12

    Article  CAS  Google Scholar 

  16. Bahloul A, Nessark B, Briot E, Groult H, Mauger A, Zaghib K, Julien CM (2013) Polypyrrole-covered MnO2 as electrode material for supercapacitor. J Power Sources 240:267–272

    Article  CAS  Google Scholar 

  17. Huo Y, Zhang H, Jiang J, Yang Y (2012) A three-dimensional nanostructured PANI/MnOx porous microsphere and its capacitive performance. J Mater Sci 47:7026–7034

    Article  CAS  Google Scholar 

  18. Babakhani B, Ivey DG (2010) Anodic deposition of manganese oxide electrodes with rod-like structures for application as electrochemical capacitors. J Power Sources 195:2110–2117

    Article  CAS  Google Scholar 

  19. Babakhani B, Ivey DG (2010) Improved capacitive behavior of electrochemically synthesized Mn oxide/PEDOT electrodes utilized as electrochemical capacitors. Electrochim Acta 55:4014–4024

    Article  CAS  Google Scholar 

  20. Dalili N, Clark MP, Davari E, Ivey DG (2016) Microstructural characterization of the cycling behavior of electrodeposited manganese oxide supercapacitors using 3D electron tomography. J Power Sources 328:318–328

    Article  CAS  Google Scholar 

  21. Babakhani B, Ivey DG (2011) Effect of electrodeposition conditions on the electrochemical capacitive behavior of synthesized manganese oxide electrodes. J Power Sources 196:10762–10774

    Article  CAS  Google Scholar 

  22. Hou Y, Cheng Y, Hobson T, Liu J (2010) Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano Lett 10:2727–2733

    Article  CAS  Google Scholar 

  23. Yu M, Zhai T, Lu X, Chen X, Xie S, Li W, Liang C, Zhao W, Zhang L, Tong Y (2013) Manganese dioxide nanorod arrays on carbon fabric for flexible solid-state supercapacitors. J Power Sources 239:64–71

    Article  CAS  Google Scholar 

  24. Devaraj S, Munichandraiah N (2005) High capacitance of electrodeposited MnO2 by the effect of a surface-active agent. Electrochem Solid-State Lett 8:A373–A377

    Article  CAS  Google Scholar 

  25. Sun Z, Firdoz S, Yap EY-X, Li L, Lu X (2013) Hierarchically structured MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors. Nanoscale 5:4379–4387

    Article  CAS  Google Scholar 

  26. Xiao J, Yang S, Wan L, Xiao F, Wang S (2013) Electrodeposition of manganese oxide nanosheets on a continuous three-dimensional nickel porous scaffold for high performance electrochemical capacitors. J Power Sources 245:1027–1034

    Article  Google Scholar 

  27. Xu P, Ye K, Cao D, Huang J, Liu T, Cheng K, Yin J, Wang G (2014) Facile synthesis of cobalt manganese oxides nanowires on nickel foam with superior electrochemical performance. J Power Sources 268:204–211

    Article  CAS  Google Scholar 

  28. Yang J, Lian L, Ruan H, Xie F, Wei M (2014) Nanostructured porous MnO2 on Ni foam substrate with a high mass loading via a CV electrodeposition route for supercapacitor application. Electrochim Acta 136:189–194

    Article  CAS  Google Scholar 

  29. Jade XRD Software, Serial No. MDI-R99100, diffraction data retrieved from ICDD database, PDF# 18-0802, 13-0162

  30. Chigane M, Ishikawa M, Izaki M (2001) Preparation of manganese oxide thin films by electrolysis/chemical deposition and electrochromism. J Electrochem Soc 148:D96–D101

    Article  CAS  Google Scholar 

  31. Gorlin Y, Jaramillo TF (2010) A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J Am Chem Soc 132:13612–13614

    Article  CAS  Google Scholar 

  32. Pei Q, Zuccarello G, Ahlskog M, Inganäs O (1994) Electrochromic and highly stable poly(3,4-ethylenedioxythiophene) switches between opaque blue-black and transparent sky blue. Polymer 35:1347–1351

    Article  CAS  Google Scholar 

  33. Deguzman RN, Awaluddin A, Shen YF, Tian ZR, Suib SL, Ching S, Oyoung CL (1995) Electrical-resistivity measurements on manganese oxides with layer and tunnel structures—birnessites, todorokites, and cryptomelanes. Chem Mater 7:1286–1292

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the National Sciences and Engineering Research Council of Canada (NSREC). The authors would also like to thank Dr. Neda Dalili (NRC-NINT) and Dr. Anqiang He for their help with some of the electron microscopy work, Mr. Peng Li for HIM imaging, and Ms. Aliesha Johnson for her help as a research assistant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas G. Ivey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clark, M.P., Qu, W. & Ivey, D.G. Nanostructured manganese oxide and manganese oxide/polyethylenedioxythiophene rods electrodeposited onto nickel foam for supercapacitor applications. J Appl Electrochem 47, 39–49 (2017). https://doi.org/10.1007/s10800-016-1015-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-016-1015-4

Keywords

Navigation