Skip to main content
Log in

Enhancement of the electrocatalytic oxygen reduction reaction on Pd3Pb ordered intermetallic catalyst in alkaline aqueous solutions

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Enhancement of the oxygen reduction reaction (ORR) was examined with Pd3Pb ordered intermetallic nanoparticles (NPs) supported on titania (Pd3Pb/TiO2). The Pd3Pb/TiO2 catalyst was synthesized by a conventional wet chemical method with Pd and Pb ion precursors, a reducing agent and TiO2 powder under ambient temperature. X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy measurements indicated the formation of the ordered intermetallic phase of Pd3Pb in the NP form on the TiO2 surface. Electrochemical measurements showed that the Pd3Pb/TiO2 catalyst markedly enhanced the ORR in an alkaline environment due to the unique surface of Pd3Pb NPs and the strong interaction between Pd3Pb and TiO2 compared with TiO2-supported Pd, Pt, and PtPb NPs. The onset potential of Pd3Pb/TiO2 was shifted toward a higher potential by 110–150 mV compared with Pd/TiO2, PtPb/TiO2, and Pt/TiO2.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu ZL, Zhao B, Guo CL, Sun Y, Shi Y, Yang HY, Li Z (2010) J Colloid Interface Sci 351:233–238

    Article  CAS  Google Scholar 

  2. Chen DJ, Zhou ZY, Wang Q, Xiang DM, Tian N, Sun SG (2010) Chem Commun 46:4252–4254

    Article  CAS  Google Scholar 

  3. Wu G, Mack NH, Gao W, Ma S, Zhong R, Han J, Baldwin JK, Zelenay P (2012) ACS Nano 6:9764–9776

    Article  CAS  Google Scholar 

  4. Debe MK (2012) Nature 486:43–51

    Article  CAS  Google Scholar 

  5. Liang YY, Li YG, Wang HL, Zhou JG, Wang J, Regier T, Dai H (2011) J Nat Mater 10:780–786

    Article  CAS  Google Scholar 

  6. Cheng FY, Shen JA, Peng B, Pan YD, Tao ZL, Chen J (2011) Nat Chem 3:79–84

    Article  CAS  Google Scholar 

  7. Hong JW, Kang SW, Choi BS, Kim D, Lee SB, Han SW (2012) ACS Nano 6:2410–2419

    Article  CAS  Google Scholar 

  8. Zhou RF, Jaroniec M, Qiao SZ (2015) Chem Cat Chem 7:3808–3817

    CAS  Google Scholar 

  9. Polarz S (2011) Adv Funct Mater 21:3214

    Article  CAS  Google Scholar 

  10. Lee JS, Park GS, Lee HI, Kim ST, Cao RG, Liu ML, Cho J (2011) Nano Lett 11:5362–5366

    Article  CAS  Google Scholar 

  11. Zhang Z, More KL, Sun K, Wu Z, Li W (2011) Chem Mater 23:1570–1577

    Article  CAS  Google Scholar 

  12. Sekol RC, Li X, Cohen P, Doubek G, Carmo M, Taylor AD (2013) Appl Catal B 138:285–293

    Article  Google Scholar 

  13. Shim JH, Kim J, Lee C, Lee Y (2011) Chem Mater 23:4694–4700

    Article  CAS  Google Scholar 

  14. Sun W, Hsu A, Chen R (2011) J Power Sources 196:4491–4498

    Article  CAS  Google Scholar 

  15. Antolini E (2009) Energy Environ Sci 2:915–931

    Article  CAS  Google Scholar 

  16. Lu Y, Jiang Y, Gao X, Wang X, Chen W (2014) J Am Chem Soc 136:11687–11697

    Article  CAS  Google Scholar 

  17. Wang D, Lu S, Jiang S (2010) Chem Commun 46:2058

    Article  CAS  Google Scholar 

  18. Wang M, Zhang W, Wang J, Wexler D, Poynton SD, Slade RCT, Liu H, Jensen BW, Kerr R, Shi D, Chen J (2013) ACS Appl Mater Interfaces 5:12708–12715

    Article  CAS  Google Scholar 

  19. Kang YS, Choi KH, Ahn D, Lee MJ, Baik J, Chung DY, Kim MJ, Minhyoung L, Kim SY, Shin H, Lee KU, Sung YE (2016) J Power Sources 303:234–242

    Article  CAS  Google Scholar 

  20. Wei YC, Liu CW, Wang KW (2011) Chem Commun 47:11927–11929

    Article  CAS  Google Scholar 

  21. Chen L, Guo H, Fujita T, Hirata A, Zhang W, Inove A, Chen M (2011) Adv Funct Mater 21:4364–4370

    Article  CAS  Google Scholar 

  22. Wu J, Shan S, Luo J, Joseph P, Petkov P, Zhong CJ (2015) ACS Appl Mater Interfaces 7(46):25906–25913

    Article  CAS  Google Scholar 

  23. Tang W, Zhang L, Henkelman G (2011) J Phys Chem Lett 2:1328–1331

    Article  CAS  Google Scholar 

  24. Yin S, Cai M, Wang C, Shen PS (2011) Energy Environ Sci 4:558–563

    Article  CAS  Google Scholar 

  25. Wang D, Xin HL, Wang H, Yu Y, Rus E, Muller DA, DiSalvo FJ, Abruña HD (2012) Chem Mater 24:2274–2281

    Article  CAS  Google Scholar 

  26. Cai J, Huang Y, Guo Y (2013) Electrochim Acta 99:22–29

    Article  CAS  Google Scholar 

  27. Tian M, Malig M, Chen S, Chen A (2011) Electrochem Commun 13:370–373

    Article  CAS  Google Scholar 

  28. Yin Z, Chi M, Zhu Q, Ma D, Sun J, Bao X (2013) J Mater Chem A 1:9157–9163

    Article  CAS  Google Scholar 

  29. Simonet J (2010) Electrochem Commun 12:1475–1478

    Article  CAS  Google Scholar 

  30. Liu M, Lu Y, Chen W (2013) Adv Funct Mater 23:1289–1296

    Article  CAS  Google Scholar 

  31. Gunji T, Saravanan G, Tanabe T, Tsuda T, Miyauchi M, Kobayashi G, Abe H, Matsumoto F (2014) Catal. Sci Technol 4:1436–1445

    CAS  Google Scholar 

  32. Furukawa S, Suga A, Komatsu T (2014) Chem Commun 50:3277–3280

    Article  CAS  Google Scholar 

  33. Mayrhofer KJJ, Strmcnik D, Blizanac BB, Stamenkovic V, Arenz M, Markovic NM (2008) Electrochim Acta 53:3181–3188

    Article  CAS  Google Scholar 

  34. Bonnecaze RT, Mano N, Nam B, Heller A (2007) J Electrochem Soc 154:F44–F47

    Article  CAS  Google Scholar 

  35. Huang SY, Ganesan P, Park S, Popov BN (2009) J Am Chem Soc 131:13898–13899

    Article  CAS  Google Scholar 

  36. Chierchie T, Mayer C, Lorenz WJ (1982) J Electroanal Chem 135:211–220

    Article  CAS  Google Scholar 

  37. Matsumoto F, Roychowdhury C, DiSalvo FJ, Abruña HD (2008) J Electrochem Soc 155:B148–B154

    Article  CAS  Google Scholar 

  38. Massalski TB (Editor-in-Chief) (1990) Binary Phase Diagrams, 2nd ed., Vol. 1, ASM International, Materials Park, OH

  39. Seo MH, Choi SM, Kim HJ, Kim WB (2011) Electrochem Commun 13:182–185

    Article  CAS  Google Scholar 

  40. Bard AJ, Faulkner LR (1980) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  41. Park S-A, Lim H, Kim Y-T (2015) ACS Catal 5:3995–4002

    Article  CAS  Google Scholar 

  42. Wu Q, Rao Z, Yuan L, Jiang L, Sun G, Ruan J, Zhou Z, Sang S (2014) Electrochim Acta 150:157–166

    Article  CAS  Google Scholar 

  43. Sahraie NR, Kramm UI, Steinberg J, Zhang Y, Thomas A, Reier T, Paraknowitsch JP, Strasser P (2015) Nat Commun 6:8618

    Article  CAS  Google Scholar 

  44. Bruix A (2012) J Am Chem Soc 134:8968–8974

    Article  CAS  Google Scholar 

  45. Campbell CT (2012) Nat Chem 4:597–598

    Article  CAS  Google Scholar 

  46. Awaludin Z, Suzuki M, Masud J, Okajima T, Ohsaka T (2011) J Phys Chem C 115:25557–25567

    Article  CAS  Google Scholar 

  47. Jaksic JM, Labou D, Papakonstantinou GD, Siokou A, Jaksic MM (2010) J Phys Chem C 114:18298–18312

    Article  CAS  Google Scholar 

  48. Hyun K, Lee JH, Yoon CW, Kwon Y (2013) Int J Electrochem Sci 8:11752–11767

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Futoshi Matsumoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeevagan, A.J., Gunji, T., Ando, F. et al. Enhancement of the electrocatalytic oxygen reduction reaction on Pd3Pb ordered intermetallic catalyst in alkaline aqueous solutions. J Appl Electrochem 46, 745–753 (2016). https://doi.org/10.1007/s10800-016-0968-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-016-0968-7

Keywords

Navigation