Skip to main content

Advertisement

Log in

Efficient photo-electrochemical performance using CuO-based electrodes in aqua medium

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Copper oxide impregnated with different amounts of PbO and selenium layer were synthesized by electrodeposition, followed by anodization and heat treatment. The photocurrent performance of the cathodes was determined using DC (linear sweep photo-voltammetry and chronopotentiometry) and AC (electrochemical impedance spectroscopy) techniques. The photocurrent response was maximal for the CuO electrode with 13 % Pb (Cu32.06Pb12.84O54.25Se0.85). High photo-conversion efficiency (2 %) was achieved for the sample with a band gap of 1.6 eV in 0.5 M Na2SO4 medium at −0.2 V (vs. SCE) bias potential under illumination. The photocurrent stability of the samples was tested at 0 V (vs. SCE) in the flip-flop light condition for 50 min. Physical characterizations such as field emission scanning electron microscopy/energy dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and UV–visible spectroscopy were performed to gather information about the morphology, elemental compositions, crystallinity, binding energy and band gap of the thin film.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 1972:37–38

    Article  Google Scholar 

  2. Chemelewski WD, Lee HC, Lin JF, Bard AJ, Mullins CB (2014) Amorphous FeOOH oxygen evolution reaction catalyst for photoelectrochemical water splitting. J Am Chem Soc 136:2843–2850

    Article  CAS  Google Scholar 

  3. Merki D, Fierro S, Vrubel H, Hu X (2011) Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem Sci 2:1262–1267

    Article  CAS  Google Scholar 

  4. Cho SK, Park HS, Lee HC, Nam KM, Bard AJ (2013) Metal doping of bivo4 by composite electrodeposition with improved photoelectrochemical water oxidation. J Phys Chem C 117:23048–23056

    Article  CAS  Google Scholar 

  5. Momeni MM, Yousef G (2015) Zohre Ghonchegi Visible light activity of sulfur-doped TiO2 nanostructure photoelectrodes prepared by single-step electrochemical anodizing process. J Solid State Electrochem 19:1359–1366

    Article  CAS  Google Scholar 

  6. Momeni MM, Ghayeb Y (2015) Photoelectrochemical water splitting on chromium-doped titanium dioxide nanotube photoanodes prepared by single-step anodizing. J Alloy Compd 637:393–400

    Article  CAS  Google Scholar 

  7. Momeni MM (2015) Study of synergistic effect among photo-electro- and sonoprocesses in photocatalyst degradation of phenol on tungsten-loaded titania nanotubes composite electrode. Appl Phys A 119:1413–1422

    Article  CAS  Google Scholar 

  8. Momeni MM, Ghayeb Y, Mohammad F (2015) Solar water splitting for hydrogen production with Fe2O3 nanotubes prepared by anodizing method: effect of anodizing time on performance of Fe2O3 nanotube arrays. J Mater Sci 26:685–692

    CAS  Google Scholar 

  9. Momeni MM, Ghayeb Y, Mohammad F, Davarzadeh M (2015) Single-step electrochemical anodization for synthesis of hierarchical WO3–TiO2 nanotube arrays on titanium foil as a good photoanode for water splitting with visible light, J Electroanal Chem, 739:149–155.10. Momeni MM, Ghayeb Y (2015) Visible light-driven photoelectrochemical water splitting on ZnO–TiO2 heterogeneous nanotube photoanodes. Ceram Int 45:557–566

    CAS  Google Scholar 

  10. Momeni MM, Ghayeb Y (2015) Visible light-driven photoelectrochemical water splitting on ZnO–TiO2 heterogeneous nanotube photoanodes. Ceram Int 45:557–566

    CAS  Google Scholar 

  11. Maijenburg AW, Hattori AN, De Respinis M, McShane CM, Choi KS, Dam B, Tanaka H, ten Elshof JE (2013) Ni and p-Cu2O nanocubes with a small size distribution by templated electrodeposition and their characterization by photocurrent measurement. ACS Appl Mater Inter 5:10938–10945

    Article  CAS  Google Scholar 

  12. Hu CC, Teng H (2010) Structural features of p-type semiconducting NiO as a co-catalyst for photocatalytic water splitting. J Catal 272:1–8

    Article  CAS  Google Scholar 

  13. Masashi K, Tomonari Y, Keiko M, Masaya I, Hatayama T (2014) Epitaxial p-type SiC as a self-driven photocathode for water splitting. Int J Hydrog Energy 39:4845–4849

    Article  Google Scholar 

  14. Ebadi M, Mat-Teridi MA, Sulaiman MY, Basirun WJ, Asim N, Ludin NA, Ibrahim MA, Sopian K (2015) Electrodeposited p-type Co3O4 with high photoelectrochemical performance in aqueous medium. RSC Advanc 5:36820–36827

    Article  CAS  Google Scholar 

  15. Grimes CA, Varghese OK (2008) Light, water, hydrogen: the solar generation of hydrogen by water photoelectrolysis. Springer, New York

    Book  Google Scholar 

  16. Tahir D, Tougaard S (2012) Electronic and optical properties of Cu, CuO and Cu2O studied by electron spectroscopy. J Phys-Condens Mat 24(1–8):175002

    Article  Google Scholar 

  17. Zhang Z, Wang P (2012) Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy. J Mat Chem 22:2456–2464

    Article  CAS  Google Scholar 

  18. Woodhouse M, Parkinson BA (2009) Combinatorial approaches for the identification and optimization of oxide semiconductors for efficient solar photoelectrolysis. Chem Soc Rev 38:197–210

    Article  CAS  Google Scholar 

  19. Lin CY, Lai YH, Mersch D, Reisner E (2012) Cu2O| NiOx Nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting. Chem Sci 3:3482–3487

    Article  CAS  Google Scholar 

  20. Walsh A, Yan Y, Huda MN, Al-Jassim MM, Wei S-H (2009) Band edge electronic structure of BiVO(4): elucidating the role of the Bi s and V d orbitals. Chem Mater 21:547–551

    Article  CAS  Google Scholar 

  21. Mayer MA, Speaks DT, Yu KM, Mao SS, Haller EE, Walukiewicz W (2010) Band structure engineering of ZnO1−x Sex alloys, solar hydrogen and nanotechnology V HichamIdriss; Heli Wang San Diego, California. Appl Phys Lett 97:22104

    Article  Google Scholar 

  22. Liu P, Ma Y, Cai W, Wang Z, Wang J, Qi L, Chen D (2007) Photoconductivity of single-crystalline selenium nanotubes. Nanotechnology 18:205704

    Article  Google Scholar 

  23. Mansoor MA, Ehsan MA, McKee V, Huang NM, Ebadi M, Arifin Z, Basirun WJ, Mazhar M (2013) Hexagonal structured Zn(1−x) CdXO solid solution thin films: synthesis, characterization and applications in photoelectrochemical water splitting. J Mat Chem A 1:5284–5292

    Article  CAS  Google Scholar 

  24. Ehsan MA, Ming HN, Misran M, Arifin Z, Tiekink ER, Safwan AP, Ebadi M, Basirun WJ, Mazhar M (2012) Effect of Aacvd processing parameters on the growth of greenockite (Cds) thin films using a single-source cadmium precursor. Chem Vap Depos 18:191–200

    Article  CAS  Google Scholar 

  25. Lopes T, Andrade L, Ribeiro HA, Mendes A (2010) Characterization of photoelectrochemical cells for water splitting by electrochemical impedance spectroscopy. Int J Hydrog Energy 35:11601–11608

    Article  CAS  Google Scholar 

  26. Gao D, Zhang J, Zhu J, Qi J, Zhang Z, Sui W, Shi H, Xue D (2010) Vacancy-mediated magnetism in pure copper oxide nanoparticles. Nanoscal Res Lett 5:769–772

    Article  CAS  Google Scholar 

  27. Rondon S, Sherwood PM (1998) Core level and valence band spectra of PbO By XPS. Surf Sci Rep 5:97–103

    CAS  Google Scholar 

  28. Tahir D, Tougaard S (2012) Electronic and optical properties of Cu, CuO and Cu2O studied by electron spectroscopy. J Phys 24(1):175002

    Google Scholar 

  29. Veluchamy P, Sharon M, Minoura H, Ichihashi Y, Basavaswaran K (1993) Electrosynthesis of lead oxide in alkaline solution and its photoelectrochemical properties. J Electroanal Chem 344:73–89

    Article  CAS  Google Scholar 

  30. Mahmoudabad MK, Kashani-Motlagh MM (2011) Synthesis and characterization of PbO nanostructure and NiO doped with PbO through combustion of citrate nitrate Gel. Inter J Phys Sci 6:5720–5725

    CAS  Google Scholar 

  31. Chen Z, Dinh H, Miller E (2013) Photoelectrochemical water splitting: standards, experimental methods, and protocols. Springer Science & Business Media, New York

    Book  Google Scholar 

  32. Cooper WC (ed) (1967) The physics of selenium and tellurium. Pergamon Press Inc, New York

    Google Scholar 

  33. Nolan M, Elliott SD (2006) The p-type conduction mechanism in Cu2O: a first principles study. Phys Chem Chem Phys 8:5350–5358

    Article  CAS  Google Scholar 

  34. Berashevich J, Reznik A (2014) The O interstitials in Α-PbO crystal lattice to induce the magnetic properties. Phys E 59:98–101

    Article  CAS  Google Scholar 

  35. Chiang CY, Shin Y, Aroh K, Ehrman S (2012) Copper oxide photocathodes prepared by a solution based process. Int J Hydrog Energy 37:8232–8239

    Article  CAS  Google Scholar 

  36. Chiang CY, Aroh K, Franson N, Satsangi VR, Dass S, Ehrman S (2011) Copper oxide nanoparticle made by flame spray pyrolysis for photoelectrochemical water splitting-Part II: photoelectrochemical study. Int J Hydrog Energy 36:15519–15526

    Article  CAS  Google Scholar 

  37. Sagu JS, Peiris TN, Wijayantha KU (2014) Rapid and simple potentiostatic deposition of copper (Ii) oxide thin films. Electrochem Commun 42:68–71

    Article  CAS  Google Scholar 

  38. Hisatomi T, Kubota J, Domen K (2014) Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev 43:7520–7535

    Article  CAS  Google Scholar 

  39. Zhao X, Wang P, Yan Z, Ren N (2014) Ag nanoparticles decorated CuO nanowire arrays for efficient plasmon enhanced photoelectrochemical water splitting. Chem Phys Lett 609:59–64

    Article  CAS  Google Scholar 

  40. Hu CC, Nian JN, Teng H (2008) Electrodeposited p-type Cu2O as photocatalyst for H2 evolution from water reduction in the presence of WO3. Sol Energy Mat Sol C 92:1071–1076

    Article  CAS  Google Scholar 

  41. Hsu YK, Yu CH, Chen Y-C, Lin Y-G (2013) Synthesis of novel Cu2O micro/nanostructural photocathode for solar water splitting. Electrochim Acta 105:62–68

    Article  CAS  Google Scholar 

  42. Schottmiller JC (1966) Photoconductivity in tetragonal and orthorhombic lead monoxide layers. J Appl Phys 37:3505–3510

    Article  CAS  Google Scholar 

  43. Ebadi M, Basirun WJ, Alias Y, Mahmoudian MR, Leng SY (2012) Investigation of electrodeposition of Ni–Co–Fe–Zn alloys in DMSO with MHD effect. Mat Charact 66:46–55

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Ministry of Higher Education for the financial support from grants FRGS/2/2013/TK06/UKM/03/1, RP005B-13AET and FP033 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Ebadi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1510 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebadi, M., Sulaiman, M.Y., Mat-Teridi, M.A. et al. Efficient photo-electrochemical performance using CuO-based electrodes in aqua medium. J Appl Electrochem 46, 645–653 (2016). https://doi.org/10.1007/s10800-016-0948-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-016-0948-y

Keywords

Navigation