Skip to main content
Log in

Structure and electrochemical performance of highly porous carbons by single-step potassium humate carbonization for application in supercapacitors

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This paper presents the direct synthesis of highly porous carbons via the carbonization of potassium humate in inert atmosphere without any activation. Carbonization temperature is important for carbon structures and their electrochemical performance in electric double-layer capacitors. The CK800 material derived from potassium humate has a high–specific surface area of 890 m2 g−1 and an ideal average pore size of 2.56 nm. The CK800 material can also deliver a high-specific capacitance of 232 F g−1 (26.1 µF cm−2) at a constant charge/discharge current of 0.5 A g−1. This capacitance is maintained at a value of 114 F g−1 (12.8 µF cm−2) at 30 A g−1. This material also has good cycle stability with over 93.5 % capacitance retention after 5000 cycles when measured in a three-electrode system using 6 M KOH as electrolyte. In this study, the CK800 material is tested in a three-electrode system using 1 M NaHCO3 as electrolyte. Operational voltage in 1 M NaHCO3 aqueous solution could be extended up to 1.3 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Morita M, Arizono R, Yoshimoto N, Egashira M (2014) On the electrochemical activation of alkali-treated soft carbon for advanced electrochemical capacitors. J Appl Electrochem 4:447–453

    Article  Google Scholar 

  2. Zhang L, Jiang J, Holm N, Chen F (2014) Mini-chunk biochar supercapacitors. J Appl Electrochem 10:1145–1151. doi:10.1007/s10800-014-0726-7

    Article  Google Scholar 

  3. Sun L, Wang C, Zhou Y, Zhang X, Qiu J (2014) KOH-activated depleted fullerene soot for electrochemical double-layer capacitors. J Appl Electrochem 2:309–316

    Article  Google Scholar 

  4. Shukla A, Sampath S, Vijayamohanan K (2000) Electrochemical supercapacitors: energy storage beyond batteries. Curr Sci 12:1656–1661

    Google Scholar 

  5. Laskin J, Denisov EV, Shukla AK, Barlow SE, Futrell JH (2002) Surface-induced dissociation in a Fourier transform ion cyclotron resonance mass spectrometer: instrument design and evaluation. Anal Chem 14:3255–3261

    Article  Google Scholar 

  6. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors. Chem Rev 10:4245–4270

    Article  Google Scholar 

  7. Burke A (2000) Ultracapacitors: why, how, and where is the technology. J Power Sources 1:37–50

    Article  Google Scholar 

  8. Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Sci Magazine 5889:651–652

    Google Scholar 

  9. Zhang LL, Zhao X (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 9:2520–2531

    Article  Google Scholar 

  10. Li L, Dong S, Chen X, Han P, Xu H, Yao J, Shang C, Liu Z, Cui G (2012) A renewable bamboo carbon/polyaniline composite for a high-performance supercapacitor electrode material. J Solid State Electrochem 3:877–882

    Google Scholar 

  11. Wei L, Sevilla M, Fuertes AB, Mokaya R, Yushin G (2011) Hydrothermal carbonization of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes. Adv Energy Mater 3:356–361

    Article  Google Scholar 

  12. Huang C, Grobert N, Watt AA, Johnston C, Crossley A, Young NP, Grant PS (2013) Layer-by-layer spray deposition and unzipping of single-wall carbon nanotube-based thin film electrodes for electrochemical capacitors. Carbon 61:525–536

    Article  CAS  Google Scholar 

  13. Xu B, Zheng D, Jia M, Cao G, Yang Y (2013) Nitrogen-doped porous carbon simply prepared by pyrolyzing a nitrogen-containing organic salt for supercapacitors. Electrochim Acta 98:176–182. doi:10.1016/j.electacta.2013.03.053

    Article  CAS  Google Scholar 

  14. Xu B, Duan H, Chu M, Cao G, Yang Y (2013) Facile synthesis of nitrogen-doped porous carbon for supercapacitors. J Mater Chem A 14:4565. doi:10.1039/c3ta01637d

    Article  Google Scholar 

  15. Atkinson JD, Rood MJ (2012) Preparing microporous carbon from solid organic salt precursors using in situ templating and a fixed-bed reactor. Microporous Mesoporous Mater 160:174–181. doi:10.1016/j.micromeso.2012.05.008

    Article  CAS  Google Scholar 

  16. Sevilla M, Fuertes AB (2013) A general and facile synthesis strategy towards highly porous carbons: carbonization of organic salts. J Mater Chem A 44:13738–13741

    Article  Google Scholar 

  17. Sing KS, Gregg S (1982) Adsorption, surface area and porosity. Academic Press, London, pp 1–5

    Google Scholar 

  18. Stoeckli H, Rebstein P, Ballerini L (1990) On the assessment of microporosity in active carbons, a comparison of theoretical and experimental data. Carbon 28(6):907–909

    Article  CAS  Google Scholar 

  19. He X, Zhang H, Zhang H, Li X, Xiao N, Qiu J (2014) Direct synthesis of 3D hollow porous graphene balls from coal tar pitch for high performance supercapacitors. J Mater Chem A 46:19633–19640

    Article  Google Scholar 

  20. Zhang LL, Zhao X, Ji H, Stoller MD, Lai L, Murali S, Mcdonnell S, Cleveger B, Wallace RM, Ruoff RS (2012) Nitrogen doping of graphene and its effect on quantum capacitance, and a new insight on the enhanced capacitance of N-doped carbon. Energy Environ Science 11:9618–9625

    Article  Google Scholar 

  21. Zhu Y, Murali S, Stoller MD, Ganesh K, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M (2011) Carbon-based supercapacitors produced by activation of graphene. Science 6037:1537–1541

    Article  Google Scholar 

  22. Kajdos A, Kvit A, Jones F, Jagiello J, Yushin G (2010) Tailoring the pore alignment for rapid ion transport in microporous carbons. J Am Cheml Soc 10:3252–3253

    Article  Google Scholar 

  23. Biniak S, Szymański G, Siedlewski J, Światkowski A (1997) The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon 12:1799–1810

    Article  Google Scholar 

  24. Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C (2008) Chemical oxidation of multiwalled carbon nanotubes. Carbon 6:833–840

    Article  Google Scholar 

  25. Okpalugo T, Papakonstantinou P, Murphy H, McLaughlin J, Brown N (2005) High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs. Carbon 1:153–161

    Article  Google Scholar 

  26. Delpeux S, Beguin F, Benoit R, Erre R, Manolova N, Rashkov I (1998) Fullerene core star-like polymers—1. Preparation from fullerenes and monoazidopolyethers. Eur Polym J 7:905–915

    Article  Google Scholar 

  27. Li W, Zhang F, Dou Y, Wu Z, Liu H, Qian X, Gu D, Xia Y, Tu B, Zhao D (2011) A self template strategy for the synthesis of mesoporous carbon nanofibers as advanced supercapacitor electrodes. Adv Energy Mater 3:382–386

    Article  Google Scholar 

  28. Deng Y, Wei J, Sun Z, Zhao D (2013) Large-pore ordered mesoporous materials templated from non-Pluronic amphiphilic block copolymers. Chem Soc Rev 9:4054–4070

    Article  Google Scholar 

  29. Chaikittisilp W, Hu M, Wang H, Huang H-S, Fujita T, Wu KC-W, Chen L-C, Yamauchi Y, Ariga K (2012) Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes. Chem Commun 58:7259–7261

    Article  Google Scholar 

  30. Li F, Morris M, Chan K-Y (2011) Electrochemical capacitance and ionic transport in the mesoporous shell of a hierarchical porous core–shell carbon structure. J Mater Chem 24:8880–8886

    Article  Google Scholar 

  31. Zhou G, Wang D-W, Li F, Zhang L, Li N, Wu Z-S, Wen L, Lu GQ, Cheng H-M (2010) Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater 18:5306–5313

    Article  Google Scholar 

  32. Jiang HL, Liu B, Lan YQ, Kuratani K, Akita T, Shioyama H, Zong F, Xu Q (2011) From metal-organic framework to nanoporous carbon: toward a very high surface area and hydrogen uptake. J Am Chem Soc 31:11854–11857. doi:10.1021/ja203184k

    Article  Google Scholar 

  33. Portet C, Yang Z, Korenblit Y, Gogotsi Y, Mokaya R, Yushin G (2009) Electrical double-layer capacitance of zeolite-templated carbon in organic electrolyte. J Electrochem Soc 1:A1. doi:10.1149/1.3002375

    Article  Google Scholar 

  34. Wang Y, Chang B, Guan D, Dong X (2015) Mesoporous activated carbon spheres derived from resorcinol-formaldehyde resin with high performance for supercapacitors. J Solid State Electrochem 19(6):1783–1791

  35. Kishore B, Shanmughasundaram D, Penki TR, Munichandraiah N (2014) Coconut kernel-derived activated carbon as electrode material for electrical double-layer capacitors. J Appl Electrochem 8:903–916

    Article  Google Scholar 

  36. Luo H-M, Yang Y-F, Sun Y-X, Zhao X, Zhang J-Q (2015) Preparation of lactose-based attapulgite template carbon materials and their electrochemical performance. J Solid State Electrochem 19(4):1171–1180

  37. Zhang P, Sun F, Shen Z, Cao D (2014) ZIF-derived porous carbon: a promising supercapacitor electrode material. J Mater Chem A 2(32):12873–12880

    Article  CAS  Google Scholar 

  38. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 10:3498–3502

    Article  Google Scholar 

  39. Zhang J, Zhao X (2012) On the configuration of supercapacitors for maximizing electrochemical performance. ChemSusChem 5:818–841

    Article  CAS  Google Scholar 

  40. Hulicova D, Kodama M, Hatori H (2006) Electrochemical performance of nitrogen-enriched carbons in aqueous and non-aqueous supercapacitors. Chem Mater 9:2318–2326

    Article  Google Scholar 

  41. Demarconnay L, Raymundo-Pinero E, Béguin F (2010) A symmetric carbon/carbon supercapacitor operating at 1.6 V by using a neutral aqueous solution. Electrochem Commun 10:1275–1278

    Article  Google Scholar 

  42. Fic K, Lota G, Meller M, Frackowiak E (2012) Novel insight into neutral medium as electrolyte for high-voltage supercapacitors. Energy Environ Sci 2:5842–5850

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (NSFC, Nos. 21364004 and 51462020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HeMing Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, H., Yang, Y., Chen, Y. et al. Structure and electrochemical performance of highly porous carbons by single-step potassium humate carbonization for application in supercapacitors. J Appl Electrochem 46, 113–121 (2016). https://doi.org/10.1007/s10800-015-0894-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0894-0

Keywords

Navigation