Skip to main content

Advertisement

Log in

Simultaneous in situ formation of Ni-based catalysts at the anode for glycerol oxidation and at the cathode for hydrogen evolution

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This study investigated the simultaneous in situ formation of Ni-based catalysts at the anode and cathode for glycerol oxidation and hydrogen evolution, respectively. The formation of electrocatalysts and their immobilization on the electrode surface occur simultaneously, avoiding the tedious and laborious procedures for the preparation and immobilization of the electrocatalysts. Ni salt in the homogeneous solution was deposited to repair the Ni-based electrocatalysts on the electrode surface, accompanied by the electrolysis of glycerol at the anode and the hydrogen evolution reaction at the cathode, exhibiting good working stability. This technique may find potential applications in the conversion of solar energy into storable fuels via the electrolysis of H2O or small molecules to produce hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dau H, Limberg C, Reier T, Risch M, Roggan S, Strasser P (2010) The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis. ChemCatChem 2:724–761. doi:10.1002/cctc.201000126

    Article  CAS  Google Scholar 

  2. Symes MD, Cronin L (2013) Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electron-coupled-proton buffer. Nat Chem 5:403–409. doi:10.1038/nchem.1621

    Article  CAS  Google Scholar 

  3. Birry L, Lasia A (2004) Studies of the hydrogen evolution reaction on Raney nickel—molybdenum electrodes. J Appl Electrochem 34:735–749. doi:10.1023/B:JACH.0000031161.26544.6a

    Article  CAS  Google Scholar 

  4. Marinović V, Stevanović J, Jugović B, Maksimović M (2006) Hydrogen evolution on Ni/WC composite coatings. J Appl Electrochem 36:1005–1009. doi:10.1007/s10800-006-9168-1

    Article  Google Scholar 

  5. Le C (2011) A review of non-fossil energy based hydrogen production technologies. Energy Res Inform 27:130–137

    Google Scholar 

  6. Zhong C, Hu WB, Cheng YF (2013) Recent advances in electrocatalysts for electro-oxidation of ammonia. J Mater Chem A 1:3216–3238. doi:10.1039/C2TA00607C

    Article  CAS  Google Scholar 

  7. Ding R, Qi L, Jia M, Wang H (2014) Facile synthesis of mesoporous spinel NiCo2O4 nanostructures as highly efficient electrocatalysts for urea electro-oxidation. Nanoscale 6:1369–1376. doi:10.1039/C3NR05359H

    Article  CAS  Google Scholar 

  8. Li S-L, Xu Q (2013) Metal-organic frameworks as platforms for clean energy. Energy Environ Sci 6:1656–1683. doi:10.1039/C3EE40507A

    Article  CAS  Google Scholar 

  9. Luo J, Njoki PN, Lin Y, Mott D, Wang Zhong C-J (2006) Characterization of carbon-supported AuPt nanoparticles for electrocatalytic methanol oxidation reaction. Langmuir 22:2892–2898. doi:10.1021/la0529557

    Article  CAS  Google Scholar 

  10. Yang M, Cai Q, Liu C, Wu R, Sun D, Chen Y, Tang Y, Lu T (2014) Monodispersed hollow platinum nanospheres: facile synthesis and their enhanced electrocatalysis for methanol oxidation. J Mater Chem A 2:13738–13743. doi:10.1039/C4TA01434K

    Article  CAS  Google Scholar 

  11. Liao H, Qiu Z, Wan Q, Wang Z, Liu Y, Yang N (2014) Universal electrode interface for electrocatalytic oxidation of liquid fuels. ACS Appl Mater Interfaces 6:18055–18062. doi:10.1021/am504926r

    Article  CAS  Google Scholar 

  12. Zhou C-H, Beltramini JN, Fan Y-X, Lu GQ (2008) Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem Soc Rev 37:527–549. doi:10.1039/B707343G

    Article  Google Scholar 

  13. Du P, Eisenberg R (2012) Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: recent progress and future challenges. Energy Environ Sci 5:6012–6021. doi:10.1039/C2EE03250C

    Article  CAS  Google Scholar 

  14. Doyle RL, Godwin IJ, Brandon MP, Lyons MEG (2013) Redox and electrochemical water splitting catalytic properties of hydrated metal oxide modified electrodes. PCCP 15:13737–13783. doi:10.1039/C3CP51213D

    Article  CAS  Google Scholar 

  15. Kanan MW, Surendranath Y, Nocera DG (2009) Cobalt-phosphate oxygen-evolving compound. Chem Soc Rev 38:109–114. doi:10.1039/B802885K

    Article  CAS  Google Scholar 

  16. Dey S, Mondal B, Dey A (2014) An acetate bound cobalt oxide catalyst for water oxidation: role of monovalent anions and cations in lowering overpotential. PCCP 16:12221–12227. doi:10.1039/C4CP01205D

    Article  CAS  Google Scholar 

  17. Yin Q, Tan JM, Besson C, Geletii YV, Musaev DG, Kuznetsov AE, Luo Z, Hardcastle KI, Hill CL (2010) A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science 328:342–345. doi:10.1126/science.1185372

    Article  CAS  Google Scholar 

  18. Lei H, Han A, Li F, Zhang M, Han Y, Du P, Lai W, Cao R (2014) Electrochemical, spectroscopic and theoretical studies of a simple bifunctional cobalt corrole catalyst for oxygen evolution and hydrogen production. PCCP 16:1883–1893. doi:10.1039/C3CP54361G

    Article  CAS  Google Scholar 

  19. Helm ML, Stewart MP, Bullock RM, DuBois MR, DuBois DL (2011) A synthetic nickel electrocatalyst with a turnover frequency above 100,000 s − 1 for H2 production. Science 333:863–866

    Article  CAS  Google Scholar 

  20. Popczun EJ, McKone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, Schaak RE (2013) Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc 135:9267–9270

    Article  CAS  Google Scholar 

  21. Raj IA, Vasu K (1990) Transition metal-based hydrogen electrodes in alkaline solution—electrocatalysis on nickel based binary alloy coatings. J Appl Electrochem 20:32–38

    Article  CAS  Google Scholar 

  22. Lupi C, Dell’Era A, Pasquali M (2009) Nickel–cobalt electrodeposited alloys for hydrogen evolution in alkaline media. Int J Hydrog Energy 34:2101–2106

    Article  CAS  Google Scholar 

  23. Tian J, Liu Q, Cheng N, Asiri AM, Sun X (2014) Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water. Angew Chem Int Ed 53:9577–9581. doi:10.1002/anie.201403842

    Article  CAS  Google Scholar 

  24. Irshad A, Munichandraiah N (2014) An oxygen evolution Co-Ac catalyst—the synergistic effect of phosphate ions. PCCP 16:5412–5422. doi:10.1039/C3CP54860K

    Article  CAS  Google Scholar 

  25. Kanan MW, Nocera DG (2008) In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321:1072–1075. doi:10.1126/science.1162018

    Article  CAS  Google Scholar 

  26. Oliveira VL, Morais C, Servat K, Napporn TW, Tremiliosi-Filho G, Kokoh KB (2013) Glycerol oxidation on nickel based nanocatalysts in alkaline medium—identification of the reaction products. J Electroanal Chem 703:56–62. doi:10.1016/j.jelechem.2013.05.021

    Article  CAS  Google Scholar 

  27. Marshall AT, Haverkamp RG (2008) Production of hydrogen by the electrochemical reforming of glycerol–water solutions in a PEM electrolysis cell. Int J Hydrog Energy 33:4649–4654. doi:10.1016/j.ijhydene.2008.05.029

    Article  CAS  Google Scholar 

  28. Gómez X, Fernández C, Fierro J, Sánchez ME, Escapa A, Morán A (2011) Hydrogen production: two stage processes for waste degradation. Bioresour Technol 102:8621–8627. doi:10.1016/j.biortech.2011.03.055

    Article  Google Scholar 

  29. Yang Z, Miao Y, Wang T, Liang X, Xiao M, Li W, Yang Y (2014) The self-adsorption of Ni ultrathin layer on glassy carbon surface and their electrocatalysis toward glucose. J Electrochem Soc 161:H375–H378. doi:10.1149/2.049406jes

    Article  CAS  Google Scholar 

  30. Marken F, Paddon CA, Asogan D (2002) Direct cytochrome c electrochemistry at boron-doped diamond electrodes. Electrochem Commun 4:62–66

    Article  CAS  Google Scholar 

  31. Fernández L, Carrero H (2005) Electrochemical evaluation of ferrocene carboxylic acids confined on surfactant–clay modified glassy carbon electrodes: oxidation of ascorbic acid and uric acid. Electrochim Acta 50:1233–1240

    Article  Google Scholar 

  32. Jeffery DZ, Camara GA (2010) The formation of carbon dioxide during glycerol electrooxidation in alkaline media: first spectroscopic evidences. Electrochem Commun 12:1129–1132. doi:10.1016/j.elecom.2010.06.001

    Article  CAS  Google Scholar 

  33. Wang D, Yan W, Vijapur SH, Botte GG (2013) Electrochemically reduced graphene oxide–nickel nanocomposites for urea electrolysis. Electrochim Acta 89:732–736. doi:10.1016/j.electacta.2012.11.046

    Article  CAS  Google Scholar 

  34. Wu M-S, Ji R-Y, Zheng Y-R (2014) Nickel hydroxide electrode with a monolayer of nanocup arrays as an effective electrocatalyst for enhanced electrolysis of urea. Electrochim Acta 144:194–199. doi:10.1016/j.electacta.2014.08.098

    Article  CAS  Google Scholar 

  35. Miao Y, Ouyang L, Zhou S, Xu L, Yang Z, Xiao M, Ouyang R (2014) Electrocatalysis and electroanalysis of nickel, its oxides, hydroxides and oxyhydroxides toward small molecules. Biosens Bioelectron 53:428–439. doi:10.1016/j.bios.2013.10.008

    Article  CAS  Google Scholar 

  36. Miao Y, Wu J, Zhou S, Yang Z, Ouyang R (2013) Synergistic effect of bimetallic Ag and Ni alloys on each other’s electrocatalysis to glucose oxidation. J Electrochem Soc 160:B47–B53. doi:10.1149/2.059304jes

    Article  CAS  Google Scholar 

  37. Walczak MM, Popenoe DD, Deinhammer RS, Lamp BD, Chung C, Porter MD (1991) Reductive desorption of alkanethiolate monolayers at gold: a measure of surface coverage. Langmuir 7:2687–2693

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors greatly appreciate the support from the Innovation Program of the Shanghai Municipal Education Commission (14ZZ139).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqing Miao.

Additional information

Xiaocai Liang, Mingshu Xiao and Minglu Xu contributed equally to this work and should be considered co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, X., Xiao, M., Xu, M. et al. Simultaneous in situ formation of Ni-based catalysts at the anode for glycerol oxidation and at the cathode for hydrogen evolution. J Appl Electrochem 46, 1–8 (2016). https://doi.org/10.1007/s10800-015-0888-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0888-y

Keywords

Navigation