Skip to main content
Log in

TiO2 surface nanostructuring for improved dye loading and light scattering in double-layered screen-printed dye-sensitized solar cells

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Surface-nanostructured TiO2 nanorods were synthesized hydrothermally at 180 °C. Such nanorods have ‘crack-like’ surfaces that resemble burnt charcoal. Compared to nanorods with relatively smoother surfaces, the charcoal-like nanorods have higher-specific surface areas. By using the nanorods as a light-scattering layer in double-layered dye-sensitized solar cells, the cells based on the charcoal-like nanorods have 20 % higher dye loading and also higher diffuse reflectance compared with cells utilizing ‘smooth’ nanorods. The efficiency of a screen-printed double-layer dye-sensitized solar cell based on the charcoal-like nanorods is higher at 7.29 %. Electrochemical impedance spectroscopy was also carried out to understand the charge transfer process better.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740. doi:10.1038/353737a0

    Article  Google Scholar 

  2. Guo K, Li M, Fang X et al (2014) Improved properties of dye-sensitized solar cells by multifunctional scattering layer of yolk-shell-like TiO2 microspheres. J Power Sources 264:35–41. doi:10.1016/j.jpowsour.2014.04.061

    Article  CAS  Google Scholar 

  3. Zhou Y, Wang X, Wang H et al (2014) Enhanced dye-sensitized solar cells performance using anatase TiO2 mesocrystals with the Wulff construction of nearly 100 % exposed 101 facets as effective light scattering layer. Dalton Trans 43:4711–4719. doi:10.1039/c3dt53010h

    Article  CAS  Google Scholar 

  4. Shao F, Sun J, Gao L et al (2012) Forest-like TiO2 hierarchical structures for efficient dye-sensitized solar cells. J Mater Chem 22:6824. doi:10.1039/c2jm15442k

    Article  CAS  Google Scholar 

  5. Deepak TG, Anjusree GS, Thomas S et al (2014) A review on materials for light scattering in dye-sensitized solar cells. RSC Adv 4:17615. doi:10.1039/c4ra01308e

    Article  CAS  Google Scholar 

  6. Kuo H-P, Yang C-F, Huang A-N et al (2014) Preparation of the working electrode of dye-sensitized solar cells: effects of screen printing parameters. J Taiwan Inst Chem Eng 45:2340–2345. doi:10.1016/j.jtice.2014.06.004

    Article  CAS  Google Scholar 

  7. Gao H, Bao C, Yu T et al (2014) One-dimensional assembly of TiO2 nanoparticles toward enhancing light harvesting and electron transport for application in dye-sensitized solar cells. RSC Adv 4:10519. doi:10.1039/c3ra47546h

    Article  CAS  Google Scholar 

  8. Yan X, Feng L, Jia J et al (2013) Controllable synthesis of anatase TiO2 crystals for high-performance dye-sensitized solar cells. J Mater Chem A 1:5347. doi:10.1039/c3ta01621h

    Article  CAS  Google Scholar 

  9. Zhang W, Xie Y, Xiong D et al (2014) TiO2 nanorods: a facile size- and shape-tunable synthesis and effective improvement of charge collection kinetics for dye-sensitized solar cells. ACS Appl Mater Interfaces 6:9698–9704. doi:10.1021/am502067r

    Article  CAS  Google Scholar 

  10. Jalali M, Siavash Moakhar R, Kushwaha A et al (2015) Enhanced dye loading-light harvesting TiO2 photoanode with screen printed nanorod–nanoparticles assembly for highly efficient solar cell. Electrochim Acta 169:395–401. doi:10.1016/j.electacta.2015.04.077

    Article  CAS  Google Scholar 

  11. Chou C-S, Guo M-G, Liu K-H, Chen Y-S (2012) Preparation of TiO2 particles and their applications in the light scattering layer of a dye-sensitized solar cell. Appl Energy 92:224–233. doi:10.1016/j.apenergy.2011.10.038

    Article  CAS  Google Scholar 

  12. Fan K, Zhang W, Peng T et al (2011) Application of TiO2 fusiform nanorods for dye-sensitized solar cells with significantly improved efficiency. J Phys Chem C 115:17213–17219

    Article  CAS  Google Scholar 

  13. Shalan AE, Rashad MM, Yu Y et al (2013) Controlling the microstructure and properties of titania nanopowders for high efficiency dye sensitized solar cells. Electrochim Acta 89:469–478. doi:10.1016/j.electacta.2012.11.091

    Article  CAS  Google Scholar 

  14. Luo J, Gao L, Sun J, Liu Y (2012) A bilayer structure of a titania nanoparticle/highly-ordered nanotube array for low-temperature dye-sensitized solar cells. RSC Adv 2:1884. doi:10.1039/c2ra00731b

    Article  CAS  Google Scholar 

  15. Jiang J, Gu F, Ren X et al (2011) Efficient light scattering from one-pot solvothermally derived TiO2 nanospindles. Ind Eng Chem Res 50:9003–9008

    Article  CAS  Google Scholar 

  16. Wu W-Q, Rao H-S, Feng H-L et al (2014) A family of vertically aligned nanowires with smooth, hierarchical and hyperbranched architectures for efficient energy conversion. Nano Energy 9:15–24. doi:10.1016/j.nanoen.2014.06.019

    Article  CAS  Google Scholar 

  17. Kim DH, Seong WM, Park IJ et al (2013) Anatase TiO2 nanorod-decoration for highly efficient photoenergy conversion. Nanoscale 5:11725–11732. doi:10.1039/c3nr03439a

    Article  CAS  Google Scholar 

  18. Lin YP, Lin SY, Lee YC, Chen-Yang YW (2013) High surface area electrospun prickle-like hierarchical anatase TiO2 nanofibers for dye-sensitized solar cell photoanodes. J Mater Chem A 1:9875. doi:10.1039/c3ta10925a

    Article  CAS  Google Scholar 

  19. Kumar PS, Nizar SAS, Sundaramurthy J et al (2011) Tunable hierarchical TiO2 nanostructures by controlled annealing of electrospun fibers: formation mechanism, morphology, crystallographic phase and photoelectrochemical performance analysis. J Mater Chem 21:9784. doi:10.1039/c1jm10859j

    Article  CAS  Google Scholar 

  20. Opara Krašovec U, Berginc M, Hočevar M, Topič M (2009) Unique TiO2 paste for high efficiency dye-sensitized solar cells. Sol Energy Mater Sol Cells 93:379–381. doi:10.1016/j.solmat.2008.11.012

    Article  Google Scholar 

  21. Fan S-Q, Li C-J, Yang G-J et al (2007) Fabrication of nano-TiO2 coating for dye-sensitized solar cell by vacuum cold spraying at room temperature. J Therm Spray Technol 16:893–897. doi:10.1007/s11666-007-9090-z

    Article  CAS  Google Scholar 

  22. Lin J, Chen J, Chen X (2011) High-efficiency dye-sensitized solar cells based on robust and both-end-open TiO2 nanotube membranes. Nanoscale Res Lett 6:475. doi:10.1186/1556-276X-6-475

    Article  Google Scholar 

  23. Song MY, Kim DK, Ihn KJ et al (2004) Electrospun TiO2 electrodes for dye-sensitized solar cells. Nanotechnology 15:1861–1865. doi:10.1088/0957-4484/15/12/030

    Article  CAS  Google Scholar 

  24. Ito S, Chen P, Comte P et al (2007) Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells. Prog Photovolt Res Appl 15:603–612. doi:10.1002/pip

    Article  CAS  Google Scholar 

  25. De Marco L, Manca M, Giannuzzi R et al (2010) Novel preparation method of TiO2 -nanorod-based photoelectrodes for dye-sensitized solar cells with improved light-harvesting efficiency. J Phys Chem C 114:4228–4236

    Article  Google Scholar 

  26. Wang Z-S, Kawauchi H, Kashima T, Arakawa H (2004) Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coord Chem Rev 248:1381–1389. doi:10.1016/j.ccr.2004.03.006

    Article  CAS  Google Scholar 

  27. Cullity BD (1978) Elements of X-ray diffraction. Addison-Wesley, Massachusetts

  28. Kasuga T, Hiramatsu M, Hoson A (1999) Titania nanotubes prepared by chemical processing. Adv Mater 567:1307–1311

    Article  Google Scholar 

  29. Qiu Y, Yan K, Yang S et al (2010) Synthesis of size-tunable anatase TiO2 nanospindles and their assembly into anatase@titanium oxynitride/titanium nitride–graphene nanocomposites for rechargeable lithium ion batteries with high cycling performance. ACS Nano 4:6515–6526

    Article  CAS  Google Scholar 

  30. Koide N, Islam A, Chiba Y, Han L (2006) Improvement of efficiency of dye-sensitized solar cells based on analysis of equivalent circuit. J Photochem Photobiol A 182:296–305. doi:10.1016/j.jphotochem.2006.04.030

    Article  CAS  Google Scholar 

  31. Fabregat-santiago F, Bisquert J, Palomares E et al (2007) Correlation between photovoltaic performance and impedance spectroscopy of dye-sensitized solar cells based on ionic liquids. J Phys Chem C 111:6550–6560

    Article  CAS  Google Scholar 

  32. Wang Q, Ito S, Gratzel M et al (2006) Characteristics of high efficiency dye-sensitized solar cells. J Phys Chem B 110:25210–25221

    Article  CAS  Google Scholar 

  33. Bisquert J, Fabregat-santiago F, Ferriols S et al (2000) Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution. J Phys Chem B 104:2287–2298

    Article  CAS  Google Scholar 

  34. Fredin K (2007) Studies of charge transport processes in dye-sensitized solar cells, Doctoral thesis, KTH

  35. Wu W-Q, Xu Y-F, Rao H-S et al (2013) A double layered TiO2 photoanode consisting of hierarchical flowers and nanoparticles for high-efficiency dye-sensitized solar cells. Nanoscale 5:4362–4369. doi:10.1039/c3nr00508a

    Article  CAS  Google Scholar 

  36. Yan K, Qiu Y, Chen W et al (2011) A double layered photoanode made of highly crystalline TiO2 nanooctahedra and agglutinated mesoporous TiO2 microspheres for high efficiency dye sensitized solar cells. Energy Environ Sci 4:2168. doi:10.1039/c1ee01071a

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Kia Liang Goh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 59 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalali, M., Moakhar, R.S., Kushwaha, A. et al. TiO2 surface nanostructuring for improved dye loading and light scattering in double-layered screen-printed dye-sensitized solar cells. J Appl Electrochem 45, 831–838 (2015). https://doi.org/10.1007/s10800-015-0852-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0852-x

Keywords

Navigation