Skip to main content
Log in

Electrolytic ferrate preparation in various hydroxide molten media

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Ferrate(VI) has the potential to be used as an environmentally friendly treatment for wastewater and drinking water. The electrochemical preparation of ferrate can be considered a “green” and simple approach because it typically involves a one-step reaction without harmful or expensive chemicals for the oxidation of Fe(0) to Fe(VI). The electrolyses are performed in three molten systems (i.e. NaOH–H2O, KOH–H2O and NaOH–KOH–H2O). In the first molten system, soluble ferrate was prepared in relatively low yield and current efficiency for continuous addition to wastewater. In the second system, highly stable ferrate that is easily transported and insoluble is produced with high yield. In the third system, the properties and yield of ferrate depend on the Na/K ratio in the melt. The influence of the anode material, current density and temperature on the electrolysis yield and current efficiency during ferrate preparation is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hrnčiariková L, Gál M, Kerekeš K, Híveš J (2013) Voltammetric and impedance study of the influence of the anode composition on the electrochemical ferrate(VI) production in molten NaOH. Electrochim Acta 110:581–586

    Article  Google Scholar 

  2. Hrnčiariková L, Kerekeš K, Híveš J, Gál M (2013) The influence of anode composition on the electrochemical ferrate (VI) production in molten KOH. Int J Electrochem Sci 8(6):7768–7778

    Google Scholar 

  3. Kerekes K, Hrnciarikova L, Hives J, Gal M (2014) On the mechanism of electrochemical transpassive dissolution of Fe-based anodes in binary hydroxide media. J Electrochem Soc 161(1):C62–C68

    Article  CAS  Google Scholar 

  4. Mackul’ak T, Prousek J, Svorc Lu, Ryba J, Skubak J, Drtil M (2013) Treatment of industrial wastewater with high content of polyethylene glycols by Fenton-like reaction system (Fe-0/H2O2/H2SO4). Desalin Water Treat 51(22–24):4489–4496

    Article  Google Scholar 

  5. Takacova A, Smolinska M, Ryba J, Mackul’ak T, Jokrllova J, Hronec P, Cik G (2014) Biodegradation of Benzo[a]Pyrene through the use of algae. Central Eur J Chem 12(11):1133–1143

    Article  CAS  Google Scholar 

  6. Mackulak T, Skubak J, Grabic R, Ryba J, Birosova L, Fedorova G, Spalkova V, Bodik I (2014) National study of illicit drug use in Slovakia based on wastewater analysis. Sci Total Environ 494–495:158–165

    Article  Google Scholar 

  7. Birosova L, Mackulak T, Bodik I, Ryba J, Skubak J, Grabic R (2014) Pilot study of seasonal occurrence and distribution of antibiotics and drug resistant bacteria in wastewater treatment plants in Slovakia. Sci Total Environ 490:440–444

    Article  CAS  Google Scholar 

  8. Baquero F, Martinez J-L, Canton R (2008) Antibiotics and antibiotic resistance in water environments. Curr Opin Biotechnol 19(3):260–265

    Article  CAS  Google Scholar 

  9. Kotyza J, Soudek P, Kafka Z, Vanek T (2009) Pharmaceuticals—new environmental pollutants. Chem Listy 103(7):540–547

    CAS  Google Scholar 

  10. Midkiff WS, Covey JR, Johnson MD (1995) Removal of radionuclides in wastewaters utilizing potassium ferrate. 6. Discussion. Water Environ Res 67(6):1007–1008

    Article  Google Scholar 

  11. Jiang JQ (2007) Research progress in the use of ferrate(VI) for the environmental remediation. J Hazard Mater 146(3):617–623

    Article  CAS  Google Scholar 

  12. Sharma VK (2004) Use of iron(VI) and iron(V) in water and wastewater treatment. Water Sci Technol 49(4):69–74

    CAS  Google Scholar 

  13. Jiang JQ, Lloyd B (2002) Progress in the development and use of ferrate(VI) salt as an oxidant and coagulant for water and wastewater treatment. Water Res 36(6):1397–1408

    Article  CAS  Google Scholar 

  14. Jiang JQ, Wang S (2003) Enhanced coagulation with potassium ferrate(VI) for removing humic substances. Environ Eng Sci 20(6):627–633

    Article  CAS  Google Scholar 

  15. Lee Y, Um IH, Yoon J (2003) Arsenic(III) oxidation by iron(VI) (ferrate) and subsequent removal of arsenic(V) by iron(III) coagulation. Environ Sci Technol 37(24):5750–5756

    Article  CAS  Google Scholar 

  16. Licht S, Yang L, Wang BH (2005) Synthesis and analysis of Ag2FeO4Fe(VI) ferrate super-iron cathodes. Electrochem Commun 7(9):931–936

    Article  CAS  Google Scholar 

  17. Sharma VK (2002) Potassium ferrate(VI): an environmentally friendly oxidant. Adv Environ Res 6(2):143–156

    Article  CAS  Google Scholar 

  18. Kazama F (1995) Viral inactivation by potassium ferrate. Water Sci Technol 31(5–6):165–168

    Article  CAS  Google Scholar 

  19. Tiwari D, Lee S-M (2011) Ferrate(VI) in the treatment of wastewaters: a new generation green chemical. In: Einschlag FSG (ed) Waste water—treatment and reutilization. InTech, pp 241–276

  20. Yu X, Licht S (2008) Advances in electrochemical Fe(VI) synthesis and analysis. J Appl Electrochem 38(6):731–742

    Article  CAS  Google Scholar 

  21. Chengchun J, Chen L, Shichao W (2008) Preparation of potassium ferrate by wet oxidation method using waste alkali: purification and reuse of waste alkali. In: Sharma VK (ed) Ferrates, ACS symposium series, vol 985., American Chemical SocietyWashington, D.C., pp 94–101

    Google Scholar 

  22. Benová M, Híveš J, Bouzek K, Sharma VK (2008) Electrochemical ferrate(VI) synthesis: a molten salt approach. In: Sharma VK (ed) Ferrates, ACS symposium series, vol 985., American Chemical SocietyWashongton, D.C., pp 68–80

    Google Scholar 

  23. Hives J, Benova M, Bouzek K, Sharma VK (2006) Electrochemical formation of ferrate(VI) in a molten NaOH–KOH system. Electrochem Commun 8(11):1737–1740

    Article  CAS  Google Scholar 

  24. Amarasekara AS, Wiredu B, Razzaq A (2012) Vanillin based polymers: I. An electrochemical route to polyvanillin. Green Chem 14(9):2395–2397

    Article  CAS  Google Scholar 

  25. Bensemhoun J, Condon S (2012) Valorization of glycerol 1,2-carbonate as a precursor for the development of new synthons in organic chemistry. Green Chem 14(9):2595–2599

    Article  CAS  Google Scholar 

  26. Buckley BR, Chan Y, Dreyfus N, Elliott C, Marken F, Page PCB (2012) Harnessing applied potential to oxidation in water. Green Chem 14(8):2221–2225

    Article  CAS  Google Scholar 

  27. Sharma VK (2011) Oxidation of inorganic contaminants by ferrates (VI, V, and IV)-kinetics and mechanisms: a review. J Environ Manag 92(4):1051–1073

    Article  CAS  Google Scholar 

  28. Tanwar S, Chuang M-C, Prasad KS, J-aA Ho (2012) Template-free synthesis of an electroactive Au-Calix-PPY nanocomposite for electrochemical sensor applications. Green Chem 14(3):799–808

    Article  CAS  Google Scholar 

  29. Varmaghani F, Nematollahi D, Mallakpour S, Esmaili R (2012) Electrochemical oxidation of 4-substituted urazoles in the presence of arylsulfinic acids: an efficient method for the synthesis of new sulfonamide derivatives. Green Chem 14(4):963–967

    Article  CAS  Google Scholar 

  30. Bouzek K, Schmidt M, Wragg AA (1990) Influence of electrolyte composition on current yield during ferrate(VI) production by anodic iron dissolution. Electrochem Commun 1(9):370–374

    Article  Google Scholar 

  31. Macova Z, Bouzek K (2011) The influence of electrolyte composition on electrochemical ferrate(VI) synthesis. Part II: anodic dissolution kinetics of a steel anode rich in silicon. J Appl Electrochem 41(9):1125–1133

    Article  CAS  Google Scholar 

  32. Macova Z, Bouzek K, Sharma VK (2010) The influence of electrolyte composition on electrochemical ferrate(VI) synthesis. Part I: anodic dissolution kinetics of pure iron. J Appl Electrochem 40(5):1019–1028

    Article  CAS  Google Scholar 

  33. Lapicque F, Valentin G (2002) Direct electrochemical preparation of solid potassium ferrate. Electrochem Commun 4(10):764–766

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided by the Ministry of Education, Science, Research and Sport of the Slovak Republic for project VEGA 1/0543/15. The authors also thank Prof. Jomar Thonstad (NTNU Trondheim, Norway) for his valuable comments and sharing his knowledge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Gál.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubiňáková, E., Kerekeš, K., Gál, M. et al. Electrolytic ferrate preparation in various hydroxide molten media. J Appl Electrochem 45, 1035–1042 (2015). https://doi.org/10.1007/s10800-015-0841-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0841-0

Keywords

Navigation