Skip to main content
Log in

Capacity recovery of aluminium–air battery by refilling salty water with cell structure modification

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

By modifying the aluminium–air battery structure with placing layers of activated carbon between an aqueous NaCl electrolyte and both an aluminium anode and an air cathode, capacity recovery was observed. When the NaCl aqueous electrolyte was refilled after electrolyte evaporation, a repeatable cell capacity was obtained. It was suggested that repeatable cell capacity was obtained because by products deposited on carbon internal layer, instead of depositing on the electrodes directly. One also deducted that the large discharge current with the large cell capacity was obtained by synergetic effect of the capacitor (large electric current) and the aluminium–air battery (large cell capacity). The results suggested that aluminium-associated ions as well as sodium-associated ions may participate in the relevant electrochemical reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gallant B et al (2013) Influence of Li2O2 morphology on oxygen reduction and evolution kinetics in Li–O2 batteries. Energy Environ Sci 6:2518–2528

    Article  CAS  Google Scholar 

  2. Orikasa Y et al (2014) High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements. Sci Rep 4:5622–5627

    Article  CAS  Google Scholar 

  3. Wang X et al (2014) An aqueous rechargeable lithium battery using coated Li metal as anode. Sci Rep 3:1401–1405

    Google Scholar 

  4. Manke I et al (2007) In situ investigation of the discharge of alkaline Zn–MnO2 batteries with synchrotron X-ray and neutron tomographies. Appl Phys Lett 90:214102–214104

    Article  Google Scholar 

  5. Qu Q et al (2008) Study on electrochemical performance of activated carbon in aqueous Li2SO4, Na2SO4 and K2SO4 electrolytes. Electrochem Commun 10:1652–1655

    Article  CAS  Google Scholar 

  6. Park Y et al (2013) A new high-energy cathode for a Na–Ion battery with ultrahigh stability. J Am Chem Soc 135:13870–13878

    Article  CAS  Google Scholar 

  7. Li Q, Bjerrum N (2002) Aluminum as anode for energy storage and conversion. J Power Sources 110:1–10

    Article  CAS  Google Scholar 

  8. Ma J, Wen J, Gao J, Li Q (2014) Performance of Al0.5 Mg0.02 Ga0.1 Sn0.5 Mn as anode for Al air battery in NaCl solutions. J Power Sources 253:419–423

    Article  CAS  Google Scholar 

  9. Doche M, Novel-Cattin F, Durand R, Rameau J (1997) Characterization of different grades of aluminum anodes for aluminum/air batteries. J Power Sources 65:197–205

    Article  CAS  Google Scholar 

  10. Egan D, Ponce de León C, Wood R, Jones R, Stokes K, Walsh F (2013) Developments in electrode materials and electrolytes for aluminium–air batteries. J Power Sources 236:293–310

    Article  CAS  Google Scholar 

  11. Patnaik R et al (1994) Heat management in aluminium/air batteries: sources of heat. J Power Sources 50:331–342

    Article  CAS  Google Scholar 

  12. Rudd E, Gbbons W (1994) High energy density aluminum/oxygen cell. J Power Sources 47:329–340

    Article  CAS  Google Scholar 

  13. Abedin S, Saleh A (2004) Characterization of some aluminium alloys for application as anodes in alkaline batteries. J Appl Electrochem 34:331–335

    Article  Google Scholar 

  14. Krishnan M, Subramanyan N (1997) The influence of some aldehydes on the corrosion and anodic behaviour of aluminium in sodium hydroxide solution. Corros Sci 17:893–900

    Article  Google Scholar 

  15. Paramasivam M, Iyer S (2001) Influence of alloying additives on corrosion and hydrogen permeation through commercial aluminium in alkaline solution. J Appl Electrochem 31:115–119

    Article  CAS  Google Scholar 

  16. Macdonald D, English C (1990) Development of anodes for aluminium/air batteries—solution phase inhibition of corrosion. J Appl Electrochem 20:405–417

    Article  CAS  Google Scholar 

  17. Shao H et al (2002) The cooperative effect of calcium ions and tartrate ions on the corrosion inhibition of pure aluminum in an alkaline solution. Mater Chem Phy 77:305–309

    Article  Google Scholar 

  18. Ein-Eli Y, Auinat M, Starrosvetsky D (2003) Electrochemical and surface studies of zinc in alkaline solutions containing organic corrosion inhibitors. J Power Sources 114:330–337

    Article  CAS  Google Scholar 

  19. Maayta A, Al-Rawashdeh N (2004) Inhibition of acidic corrosion of pure aluminum by some organic compounds. Corros Sci 46:1129–1140

    Article  CAS  Google Scholar 

  20. Mukherjee A, Basumallick I (1996) Complex behaviour of aluminium dissolution in alkaline aqueous 2-propanol solution. J Power Sources 58:183–187

    Article  CAS  Google Scholar 

  21. Licht S, Tel-Vered G, Yarnitzky C (2000) Solution activators of aluminum electrochemistry in organic media. J Electrochem Soc 2:496–501

    Article  Google Scholar 

  22. Su C, Hsieh Y, Chen C, Sun I (2013) Electrodeposition of aluminum wires from the Lewis acidic AlCl3/trimethylamine hydrochloride ionic liquid without using a template. Electrochem Commun 34:170–173

    Article  CAS  Google Scholar 

  23. Hibino T, Kobayashi K, Nagao M (2013) An all-solid-state rechargeable aluminum–air battery with a hydroxide ion-conducting Sb(V)-doped SnP2O7 electrolyte. J Mater Chem A 1:14844–14848

    Article  CAS  Google Scholar 

  24. Mori R (2013) A new structured aluminium–air secondary battery with a ceramic aluminium ion conductor. RSC Adv 3:11547–11551

    Article  CAS  Google Scholar 

  25. Mori R (2014) A novel aluminium–air secondary battery with long-term stability. RSC Adv 4:1982–1987

    Article  CAS  Google Scholar 

  26. Kobayashi Y et al (1997) Trivalent Al3+ ion conduction in aluminum tungstate solid. Chem Mater 9:1649–1654

    Article  CAS  Google Scholar 

  27. Mori R (2014) A novel aluminium–air rechargeable battery with Al2O3 as the buffer to suppress byproduct accumulation directly onto an aluminium anode and air cathode. RSC Adv 4:30346–30351

    Article  CAS  Google Scholar 

  28. Mori R (2015) Addition of ceramic barriers to aluminum-air batteries to suppress by-product formation on electrodes. J Electrochem Soc 162:A188–A194

    Google Scholar 

  29. Kalluri R, Konatham D, Striolo A (2011) Aqueous NaCl solutions within charged carbon-slit pores: partition coefficients and density distributions from molecular dynamics simulations. J Phys Chem C 115:13786–13795

    Article  CAS  Google Scholar 

  30. Kalluri R et al (2013) Partition and structure of aqueous NaCl and CaCl2 electrolytes in carbon-slit electrodes. J Phys Chem C 117:13609–13619

    Article  CAS  Google Scholar 

  31. Yoshioka H et al (2014) Fabrication of apatite-type lanthanum silicate films and anode supported solid oxide fuel cells using nano-sized printable paste. J Eur Ceram Soc 34:373–379

    Article  CAS  Google Scholar 

  32. Frackowiak E, Beguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937–950

    Article  CAS  Google Scholar 

  33. Mori R et al (2011) Organic solvent based TiO2 dispersion paste for dye-sensitized solar cells prepared by industrial production level procedure. J Mater Sci 46:1341–1350

    Article  CAS  Google Scholar 

  34. Cheekatia L, Xing Y, Zhuang Y, Huang H (2011) Lithium storage characteristics for nano graphene plates. Mate Chall Altern Renew Energy 224:117–127

    Article  Google Scholar 

  35. Wang G, Shen X, Yao J, Park J (2009) Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 47:2049–2053

    Article  CAS  Google Scholar 

  36. Dahn J, Zheng T, Liu Y, Xue J (1995) Mechanism for lithium insertion in carbon aceous materials. Science 270:590–593

    Article  CAS  Google Scholar 

  37. Liu Y, Xue J, Zheng T, Dahn J (1996) Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins. Carbon 34:193–200

    Article  CAS  Google Scholar 

  38. Tachikawa H, Shimizu A (2005) Diffusion dynamics of the li atom on amorphous carbon: a direct molecular orbital-molecular dynamics study. J Phys Chem B 110:20445–20450

    Article  Google Scholar 

  39. Tarascon J, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  CAS  Google Scholar 

  40. Marquez A, Vargas A, Balbuena P (1998) Computational studies of lithium intercalation in model graphite in the presence of tetrahydrofuran. J Electrochem Soc 145:3328–3334

    Article  CAS  Google Scholar 

  41. Nakadaira M et al (1997) Excess Li ions in as mall graphite cluster. J Mater Res 12:1367–1375

    Article  CAS  Google Scholar 

  42. Fujita M, Wakabayashi K, Nakada K, Kusakabe K (1996) Peculiar localized state at zigzag graphite edge. J Phys Soc Jpn 65:1920–1923

    Article  CAS  Google Scholar 

  43. Wen Y et al (2014) Expanded graphite as superior anode for sodium–ion batteries. Nat Commun 5:4033

    CAS  Google Scholar 

Download references

Acknowledgments

The author wishes to express thanks to Dr. Sadayoshi Mori and Mr. Kazuo Sakai for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryohei Mori.

Additional information

This manuscript should be submitted to “Journal of Applied Electrochemistry”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mori, R. Capacity recovery of aluminium–air battery by refilling salty water with cell structure modification. J Appl Electrochem 45, 821–829 (2015). https://doi.org/10.1007/s10800-015-0834-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0834-z

Keywords

Navigation