Skip to main content
Log in

Electrochemical deposition of Cu and Ta from pyrrolidinium based ionic liquid

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical deposition of tantalum and copper has been investigated in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([BMP][TFSA]) on both boron doped diamond (BDD) and copper substrates in order to realize nanometric Cu–Ta bilayer deposits. Electrochemical experiments have been performed at 125 °C in a glove box, under nitrogen atmosphere. Galvanostatic runs and cyclic voltammograms performed at different scan rates have been carried out in order to determine the electroreduction path for tantalum and copper. Potentiostatic experiments were performed at the potential values corresponding to the voltammetric peaks and the samples obtained were analysed by SEM-EDX analyses. For both metals nanometric crystallites have been obtained. Cu–Ta deposits have been prepared by a dual bath technique and were constituted by fine crystallites with average sizes in the range 50–100 nm. The elemental maps indicate a different distribution of Cu–Ta depending on the substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Beyerlein IJ, Caro A, Demkowicz MJ, Mara NA, Misra A, Uberuaga BP (2013) Radiation damage tolerant nanomaterials. Mater Today 16:443–449

    Article  CAS  Google Scholar 

  2. Farrell K, Maziasz PJ, Lee EH, Mansur LK (1983) Modification of radiation damage microstructure by helium. Radiat Eff 78:277–295

    Article  CAS  Google Scholar 

  3. Marquis EA, Hyde JM, Saxey DW, Lozano-Perez S, De Castro V, Hudson D, Williams CA, Humphry-Baker S, Smith GDW (2009) Nuclear reactor materials at the atomic scale. Mater Today 12:30–37

    Article  CAS  Google Scholar 

  4. Bhattacharyya D, Demkowicz MJ, Wang YQ, Baumer RE, Nastasi M, Misra A (2012) A transmission electron microscopy study of the effect of interfaces on bubble formation in He-Implanted Cu–Nb multilayers. Microsc Microanal 18:152–161

    Article  CAS  Google Scholar 

  5. Wei MZ, Cao ZH, Shi J, Pan GJ, Xu LJ, Meng XK (2014) Anomalous plastic deformation in nanoscale Cu/Ta multilayers. Mat Sci Eng A 598:355–359

    Article  CAS  Google Scholar 

  6. Simka W, Puszczyk D, Nawrat G (2009) Electrodeposition of metals from non-aqueous solutions. Electrochim Acta 54:5307–5319

    Article  CAS  Google Scholar 

  7. Inman D, White SH (1978) The production of refractory metals by the electrolysis of molten salts; design factors and limitations. J Appl Electrochem 8:375–390

    Article  CAS  Google Scholar 

  8. Girginov A, Tzvetkoff TZ, Bojinov M (1995) Electrodeposition of refractory metals (Ti, Zr, Nb, Ta) from molten salts electrolytes. J Appl Electrochem 25:993–1003

    Article  CAS  Google Scholar 

  9. Taxil P, Mahenc J (1987) Formation of corrosion-resistant layers by electrodeposition of refractory metals or by alloy electrowinning in molten fluorides. J Appl Electrochem 17:261–269

    Article  CAS  Google Scholar 

  10. Chamelot P, Taxil P, Lafage B (1994) Voltammetric studies of tantalum electrodeposition baths. Electrochim Acta 39:2571–2575

    Article  CAS  Google Scholar 

  11. Chamelot P, Palau P, Massot L, Savall A, Taxil P (2002) Electrodeposition processes of tantalum(V) species in molten fluorides containing oxide ions. Electrochim Acta 47:3423–3429

    Article  CAS  Google Scholar 

  12. Senderoff S, Mellors GW, Reinhart WJ (1965) The electrodeposition of coherent deposits of refractory metals. J Electrochem Soc 112:840–845

    Article  CAS  Google Scholar 

  13. Polyakova LP, Polyakov EG, Matthiesen F, Christensen E, Bjerrum NJ (1994) Electrochemical study of tantalum in fluoride and oxofluoride melts. J Electrochem Soc 141:2982–2988

    Article  CAS  Google Scholar 

  14. Abbott AP, McKenzie KJ (2006) Application of ionic liquids to the electrodeposition of metals. Phys Chem Chem Phys 8:4265–4279

    Article  CAS  Google Scholar 

  15. Zein El Abedin S, Farag HK, Moustafa EM, Welz-Biermanny U, Endres F (2005) Electroreduction of tantalum fluoride in a room temperature ionic liquid at variable temperatures. Phys Chem Chem Phys 7:2333–2339

    Article  CAS  Google Scholar 

  16. Mais L, Mascia M, Vacca A, Palmas S, Delogu F (2014) Voltammetric study on the behaviour of refractory metals in ([BMP][TFSA]) ionic liquid. Chem Eng Trans 41:97–102

    Google Scholar 

  17. Zein El Abedin S, Saad AY, Farag HK, Borisenko N, Liu QX, Endres F (2007) Electrodeposition of selenium, indium and copper in an air- and water-stable ionic liquid at variable temperatures. Electrochim Acta 52:2746–2754

    Article  CAS  Google Scholar 

  18. Chen PY, Sun IW (1999) Electrochemical study of copper in a basic 1-ethyl-3 methylimidazolium tetrafluoroborate room temperature molten salt. Electrochim Acta 45:441–450

    Article  CAS  Google Scholar 

  19. Schaltin S, Shkurankov A, Binnemans K, Fransaer J (2010) Direct Cu-on-Ta electroplating from ionic liquids in high vacuum. ECS Trans 25:119–128

    Article  CAS  Google Scholar 

  20. Schaltin S, D’Urzo L, Zhao Q, Vantomme A, Plank H, Kothleitner G, Gspan C, Binnemans K, Fransaer J (2012) Direct electroplating of copper on tantalum from ionic liquids in high vacuum: origin of the tantalum oxide layer. Phys Chem Chem Phys 14:13624–13629

    Article  CAS  Google Scholar 

  21. Borisenko N, Ispas A, Zschippang E, Liu Q, Zein El Abedin S, Bund A, Endres F (2009) In situ STM and EQCM studies of tantalum electrodeposition from TaF5 in the air- and water-stable ionic liquid 1-butyl-1methylpyrrolidinium bis(trifluoromethylsulfonyl)amide. Electrochim Acta 54:1519–1528

    Article  CAS  Google Scholar 

  22. Vacca A, Mascia M, Mais L, Rizzardini S, Delogu F, Palmas S (2014) On the electrodeposition of niobium from 1-Butyl-1-Methylpyrrolidinium bis(trifluoromethylsulfonyl)imide at conductive diamond substrates. Electrocatalysis 5:16–22

    Article  CAS  Google Scholar 

  23. Babushkina OB, Ekres S (2010) Spectroscopic study of the electrochemical behaviour of tantalum(V) chloride and oxochloride species in 1-butyl-1-methylpyrrolidinium chloride. Electrochim Acta 56:867–877

    Article  CAS  Google Scholar 

  24. Pletcher D, Greff R, Peat R, Peter LM, Robinson J (2001) Instrumental methods in electrochemistry. Woodhead Publishing, Cambridge

    Book  Google Scholar 

  25. Maho A, Delhalle J, Mekhalif Z (2013) Study of the formation process and the characteristics of tantalum layers electrodeposited on Nitinol plates in the 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid. Electrochim Acta 89:346–358

    Article  CAS  Google Scholar 

  26. Azaceta E, Idigoras J, Echeberria J, Zukal A, Kavan L, Miguel O, Grande HJ, Anta JA, Tena-Zaera R (2013) ZnO–ionic liquid hybrid films: electrochemical synthesis and application in dye-sensitized solar cells. J Mater Chem A 1:10173–10183

    Article  CAS  Google Scholar 

  27. Bard AJ, Faulkner LR (2001) Electrochemical methods. John Wiley & Sons, Hoboken

    Google Scholar 

  28. Mascia M, Vacca A, Mais L, Palmas S, Musu E, Delogu F (2014) Electrochemical deposition of Cu and Nb from pyrrolidinium based ionic liquid. Thin Solid Films 571:325–331

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This activity is supported by the European Community Framework Programme 7, Multiscale Modelling and Materials by Design of interface-controlled Radiation Damage in Crystalline Materials (RADINTERFACES), under Grant agreement n. 263273. Laura Mais acknowledges Regione Sardegna for the PhD fellowship (POR FSE 2007–2013). The authors kindly acknowledge Dr. Elodia Musu and Dr. Simona Podda, Laboratorio Telemicroscopia Industriale—CRS4, for SEM analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annalisa Vacca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mais, L., Mascia, M., Vacca, A. et al. Electrochemical deposition of Cu and Ta from pyrrolidinium based ionic liquid. J Appl Electrochem 45, 735–744 (2015). https://doi.org/10.1007/s10800-015-0824-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0824-1

Keywords

Navigation