Skip to main content
Log in

Dynamics of anode–cathode interaction in a polymer electrolyte fuel cell revealed by simultaneous current and potential distribution measurements under local reactant-starvation conditions

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Low stoichiometry operation of fuel cells induces nonuniformities in the current generation and electrode potentials across the active electrode area. In this study, current and potential distributions are measured simultaneously in a fuel cell operating under reactant (fuel/air)-starvation conditions. During the galvanostatic operation under local reactant starvation, the localized increase of current density is observed closer to the inlet. Here under air starvation, cathode potentials dropped uniformly across the electrode area. However, during fuel starvation, a nonuniform cathode potential profile is observed. During the potentiostatic mode of operation under air-starvation condition, cathode potentials remained uniform and constant across the electrode area. However, under fuel starvation, the cathode potential profile is influenced by the anode potential profile. Electrode–electrode interaction especially during fuel starvation is captured by simultaneous measurements of current and potential distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wu J, Yuan XZ, Wang H, Blanco M, Martin JJ, Zhang J (2008) Int J Hydrog Energy 33:1735–1746

    Article  CAS  Google Scholar 

  2. Wu J, Yuan XZ, Wang H, Blanco M, Martin JJ, Zhang J (2008) Int J Hydrog Energy 33:1747–1757

    Article  CAS  Google Scholar 

  3. Natarajan D, Nguyen TV (2012) Current mapping. In: Wang H, Yuan XZ, Li H (eds) PEM fuel cell diagnostic tools. CRC, Boca Raton, FL, pp 181–208

    Google Scholar 

  4. Perez LC, Brandao L, Sousa JM, Mendes A (2011) Renew Sust Energ Rev 15:169–185

    Article  CAS  Google Scholar 

  5. Cleghorn SJC, Derouin CR, Wilson MS (1998) Gottesfeld. J Appl Electrochem 28:663–672

    Article  CAS  Google Scholar 

  6. Brett DJL, Atkins S, Brandon NP, Vesovic V (2001) Electrochem Commun 3:628–632

    Article  CAS  Google Scholar 

  7. Stumper J, Campbel SA, Wilkinson DP, Johnson MC, Davis M (1998) Electrochim Acta 43:3773–3783

    Article  CAS  Google Scholar 

  8. Ghosh PC, Wuster T, Dohle H, Kimiaie N, Mergel J, Stolen D (2005) J Fuel Cell Sci Technol 3:351–357

    Article  Google Scholar 

  9. Wieser Ch, Helmbold A, Gilzow E (2000) J Appl Electrochem 30:803–807

    Article  CAS  Google Scholar 

  10. Bender G, Wilson MS, Zawodzinski TA (2003) J Power Sources 123:163–171

    Article  CAS  Google Scholar 

  11. Hauer KH, Potthast R, Wuster T (2005) Stolten. J Power Sources 143:67–74

    Article  CAS  Google Scholar 

  12. Alaefour IE, Jiao K, Karimi G, Li X (2012) ECS Trans 42:131–142

    Article  CAS  Google Scholar 

  13. Araki TH, Koori H, Taniuchi T, Onda K (2005) J Power Sources 152:60–66

    Article  CAS  Google Scholar 

  14. Buchi FN, Geiger AB, Neto RP (2005) J Power Sources 145:62–67

    Article  Google Scholar 

  15. Brett DJL, Atkins S, Brandon NP, Vasileiadis N, Vesovic V, Kucernak AR (2007) J Power Sources 172:2–13

    Article  CAS  Google Scholar 

  16. Dong Q, Mench MM, Cleghorn S, Beuscher U (2005) J Electrochem Soc 152:A2114–A2122

    Article  Google Scholar 

  17. Freunberger SA, Schneider IA, Sui P-C, Wokaun A, Djilali N, Buchi FN (2008) J Electrochem Soc 155:B704–B714

    Article  CAS  Google Scholar 

  18. Gerard M, Poirot-Crouvezier J-P, Hissle D, Pera M-C (2010) Int J Hydrog Energy 35:12295–12307

    Article  CAS  Google Scholar 

  19. Ghosh PC, Wuster T, Dohle H, Kimiaie N, Mergel J, Stolten D (2006) J Power Sources 154:184–191

    Article  CAS  Google Scholar 

  20. Hakenjos A, Muenter H, Wittstadt U, Hebling C (2004) J Power Sources 131:213–216

    Article  CAS  Google Scholar 

  21. Hakenjos A, Tuber K, Schumacher JO, Hebling C (2004) Fuel Cells 4:185–189

    Article  CAS  Google Scholar 

  22. Hwnag JJ, Chang WR, Peng RG, Chen PY, Su A (2008) Int J Hydrog Energy 33:5718–5727

    Article  CAS  Google Scholar 

  23. Liu Z, Mao Z, Wu B, Wang L, Schmidt VM (2005) J Power Sources 141:205–210

    Article  CAS  Google Scholar 

  24. Liu Z, Yang L, Mao Z, Zhuge W, Zhang Y, Wang L (2006) J Power Sources 157:166–176

    Article  CAS  Google Scholar 

  25. Maranzana G, Lotting O, Colinart T, Chupin S, Didierjean S (2008) J Power Sources 180:748–754

    Article  CAS  Google Scholar 

  26. Mench MM, Wang C-Y, Ishikawa (2003) J Electrochem Soc 150:A1052–A1059

    Article  CAS  Google Scholar 

  27. Mennola T, Noponen M, Kallio T, Mikkola M, Hottinen T (2004) J Appl Eectrochem 34:31–36

    Article  CAS  Google Scholar 

  28. Moromoto Y, Suzuki T, Yamada H (2002) Electrochem Soc Proc 31:248–256

    Google Scholar 

  29. Natarajan D, Nguyen TV (2005) AIChE J 51:2587–2598

    Article  CAS  Google Scholar 

  30. Natarajan D, Nguyen TV (2005) AIChE J 51:2599–2608

    Article  CAS  Google Scholar 

  31. Nishikawa H, Kurihara R, Sukemori S, Sugawara T, Kobayasi H, Abe S, Aoki T, Ogami Y, Matsunaga A (2006) J Power Sources 155:213–218

    Article  CAS  Google Scholar 

  32. Qu S, Li X, Hou M, Shao Z, Yi B (2008) J Power Sources 185:302–310

    Article  CAS  Google Scholar 

  33. Qu S, Li X, Ke C, Shao Z, Yi B (2010) J Power Sources 195:6629–6636

    Article  CAS  Google Scholar 

  34. Reshetenko TV, Bender G, Bethune K (2011) Rocheleau. Electrochim Acta 56:8700–8710

    Article  CAS  Google Scholar 

  35. Santis M, Freunberger SA, Papra M, Wokaun A, Buchi FN (2006) J Power Sources 161:1076–1083

    Article  CAS  Google Scholar 

  36. Sun H, Zhang G, Guo L-J, Liu H (2006) J Power Sources 158:326–332

    Article  CAS  Google Scholar 

  37. Yu Y, Yuan X-Z, Li H, Gu E, Wang H, Wang G, Pan M (2012) Int J Hydrog Energy 37:15288–15300

    Article  CAS  Google Scholar 

  38. Zhang G, Shen S, Guo L, Liu (2012) Int J Hydrog Energy 37:1884–1892

    Article  CAS  Google Scholar 

  39. Nagata M, Itoh Y, Iwahara H (1994) Solid State Ionics 67:215–224

    Article  CAS  Google Scholar 

  40. Liu Z, Wainright JS, Huang W, Savinell RF (2004) Electrochim Acta 49:923–935

    Article  CAS  Google Scholar 

  41. He W, Nguyen TV (2004) J Electrochem Soc 151:A185–A195

    Article  CAS  Google Scholar 

  42. Winkler J, Hendriksen PV, Bonanos N, Mogensen M (1998) J Electrochem Soc 145:1184–1192

    Article  CAS  Google Scholar 

  43. Adler SB (2002) J Electrochem Soc 149:E166–E172

    Article  CAS  Google Scholar 

  44. Adler SB, Henderson BT, Wilson MA, Taylor DM, Richards RE (2002) Solid State Ionics 134:35–42

    Article  Google Scholar 

  45. Hinds G, Brightman E (2012) Electrochem Commun 17:26–29

    Article  CAS  Google Scholar 

  46. Li G, Pickup PG (2006) Electrochem Solid-State Lett 9:A249–A251

    Article  CAS  Google Scholar 

  47. Mitsuda K, Murahashi T (1990) J Electrochem Soc 137:3079–3085

    Article  CAS  Google Scholar 

  48. Mitsuda K, Murahashi T (1991) J Appl Electrochem 21:395–401

    Article  CAS  Google Scholar 

  49. Mitsuda K, Murahashi T (1991) J Appl Electrochem 21:524–530

    Article  CAS  Google Scholar 

  50. Mitsuda K, Murahashi T, Matsumoto M, Usami K (1993) J Appl Electrochem 23:19–25

    Article  CAS  Google Scholar 

  51. Mitsuda K, Nishiguchi H (2010) Electrochemistry 78:757–763 (in Japanese)

    Article  CAS  Google Scholar 

  52. Baumgartner WR, Parz P, Fraser SD, Wallnofer E, Hacker V (2008) J Power Sources 182:413–421

    Article  CAS  Google Scholar 

  53. Abbou S, Dillet J, Spernjak D, Mukundan R, Fairweather J, Borup RL, Maranzana G, Didierjean S, Lottin O (2013) ECS Trans 58:1631–1642

    Article  CAS  Google Scholar 

  54. Tsutsumi Y, Ono S, Eguchi M (2010) Electr Eng Jpn 172:10–18

    Article  Google Scholar 

  55. Gasteiger HA, Panels JE, Yan SG (2004) J Power Sources 127:162–171

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by CSIR, New Delhi through a NMITLI project. The authors thank Dr. S Pitchumani, Scientist-in-charge, CSIR-CECRI Madras Unit for his constant support. A. Manokaran thanks Ms. S. Meenakshi for her help in MEA preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Manokaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manokaran, A., Pushpavanam, S. & Sridhar, P. Dynamics of anode–cathode interaction in a polymer electrolyte fuel cell revealed by simultaneous current and potential distribution measurements under local reactant-starvation conditions. J Appl Electrochem 45, 353–363 (2015). https://doi.org/10.1007/s10800-015-0800-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0800-9

Keywords

Navigation