Skip to main content
Log in

Influence of ZnO precipitation on the cycling stability of rechargeable Zn–air batteries

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, the effect of ZnO precipitation on the electrochemical cycling stability of Zn–air batteries was systematically investigated. The results suggest that sustained electrical rechargeability can be achieved by simply appropriately choosing the amount of Zn metal anode, such that the amount of zincate ions released into the electrolyte upon full discharge of the anode is below the supersaturated solubility limit. For example, there was almost no capacity fading up to 50 cycles when the anode was designed such that the amount of zincate ions released into the electrolyte was a bit less than the chemical solubility limit of ZnO in KOH solution. Despite its limited energy density, the results presented in this study provide an important direction to the future work on electrically rechargeable Zn–air batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nestoridi M, Pletcher D, Wood RJK, Wang J, Jones RL, Stokes KR, Wilcock I (2008) The study of aluminum anodes for high power density Al/Air batteries with brine electrolyte. J Power Sources 178:445–455

    Article  CAS  Google Scholar 

  2. Hummelshoj JS, Blomqvist J, Datta S, Vegge T, Rossmeisl J, Thygesen KS, Luntz AC, Jacobsen KW, Norskov JK (2010) Communications: elementary oxygen electrode reactions in the aprotic Li–air battery. J Chem Phys 132:071101

    Article  CAS  Google Scholar 

  3. Ma Y, Li N, Li D, Zhang M, Huang X (2011) Performance of Mg 14Li–1Al–0.1Ce as anode for Mg–air battery. J Power Sources 196:2346–2350

    Article  CAS  Google Scholar 

  4. Muller S, Holzer F, Haas O (1998) Optimized zinc electrode for the rechargeable zinc–air battery. J Appl Electrochem 28:895–898

    Article  CAS  Google Scholar 

  5. Sapkota P, Kim H (2009) Zinc–air fuel cell, a potential candidate for alternative energy. J Ind Eng Chem 15:445–450

    Article  CAS  Google Scholar 

  6. Arafat RM, Wang X, Wen C (2013) High energy density metal–air batteries: a review. J Electrochem Soc 160:1759–1771

    Article  Google Scholar 

  7. Lee JS, Kim ST, Cao R, Choi NS, Liu M, Lee K, Cho J (2011) Metal-air batteries with high energy density: Li–Air versus Zn–Air. Adv Energy Mater 1:34–50

    Article  CAS  Google Scholar 

  8. Mohamad AA (2006) Zn/gelled 6 M KOH/O2 zinc–air battery. J Power Sources 159:752–757

    Article  CAS  Google Scholar 

  9. Dirkse TD, Timmer R (1969) The corrosion of zinc in KOH solution. J Electrochem Soc 116:162–165

    Article  CAS  Google Scholar 

  10. Einerhand REF, Visscher WHM, Barendrecht E (1988) Hydrogen production during zinc deposition from alkaline zincate solutions. J Appl Electrochem 18:799–806

    Article  CAS  Google Scholar 

  11. McLarnon FR, Cairns EJ (1991) The secondary alkaline zinc electrode. J Electrochem Soc 138:645–656

    Article  CAS  Google Scholar 

  12. Beck F, Ruetschi P (2000) Rechargeable batteries with aqueous electrolytes. Electrochim Acta 45:2467–2482

    Article  CAS  Google Scholar 

  13. Diggle JW, Despic AR, Bockris JO’M (1969) The mechanism of the dendritic electrocrystallization of zinc. J Electrochem Soc 116:1503–1514

    Article  CAS  Google Scholar 

  14. Othman R, Basirun WJ, Yahaya AH, Arof AK (2001) Hydroponics gel as a new electrolyte gelling agent for alkaline zinc–air cells. J Power Sources 103:34–41

    Article  CAS  Google Scholar 

  15. Othman R, Yahaya AH, Arof AK (2002) A zinc–air cell employing a porous zinc electrode fabricated from zinc–graphite-natural biodegradable polymer paste. J Appl Electrochem 32:1347–1353

    Article  CAS  Google Scholar 

  16. Bender SF, Cretzmeyer JW, Reise TF (2003) Zinc/air batteries-button configuration. In: Linden D, Reddy TB (eds) Handbook of batteries, vol 3. McGraw-Hill, New York, pp 13.1–13.21

    Google Scholar 

  17. Yang H, Cao Y, Ai X, Xiao L (2004) Improved discharge capacity and suppressed surface passivation of zinc anode in dilute alkaline solution using surfactant additives. J Power Sources 128:97–101

    Article  CAS  Google Scholar 

  18. Masri MN, Mohamad AA (2009) Effect of adding potassium hydroxide to an agar binder for use as the anode in Zn–air batteries. Corros Sci 51:3025–3029

    Article  CAS  Google Scholar 

  19. Jain R, Adler TC, McLarnon FR, Cairns EJ (1992) Development of long-lived high-performance zinc-calcium/nickel oxide cells. J Appl Electrochem 22:1039–1048

    Article  CAS  Google Scholar 

  20. Chen JS, Wang LF (1996) Evaluation of calcium zinc electrodes in zinc/silver oxide cells. J Appl Electrochem 26:227–230

    Article  CAS  Google Scholar 

  21. Yu J, Yang H, Ai X, Zhu X (2001) A study of calcium zincate as negative electrode materials for secondary batteries. J Power Sources 103:93–97

    Article  CAS  Google Scholar 

  22. Zhu JL, Zhou YH, Gao CQ (1998) Influence of surfactants on electrochemical behavior of zinc electrodes in alkaline solution. J Power Sources 72:231–235

    Article  CAS  Google Scholar 

  23. Langer A, Pantier EA (1968) A coulogravimetric investigation of the zinc electrode in potassium hydroxide. J Electrochem Soc 115:990–993

    Article  CAS  Google Scholar 

  24. Mansfeld F, Gilman S (1970) The effect of several electrode and electrolyte additive on the corrosion and polarization behavior of the alkaline zinc electrode. J Electrochem Soc 117:1328–1333

    Article  CAS  Google Scholar 

  25. Liu MB, Cook GM, Yao BP (1981) Passivation of zinc anodes in KOH electrolytes. J Electrochem Soc 128:1663–1668

    Article  CAS  Google Scholar 

  26. Debiemme-Chouvy C, Vedel J (1991) Supersaturated zincate solution: a study of the decomposition kinetics. J Electrochem Soc 138:2538–2542

    Article  CAS  Google Scholar 

  27. Bockris JO’M, Nagy Z, Drazic D (1973) On the morphology of zinc electrodeposition from alkaline solutions. J Electrochem Soc 120:30–41

    Article  CAS  Google Scholar 

  28. Wang RY, Kirk DW, Zhang GX (2006) Effects of deposition conditions on the morphology of zinc deposits from alkaline zincate solutions. J Electrochem Soc 153:357–364

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MEST) (NRF-2012-M1A2A2-029543) and Global Frontier Program through the Global Frontier Hybrid Interface Materials (GFHIM) of the NRF funded by the Ministry of Science, ICT & Future Planning (2013M3A6B1078877).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heon-Cheol Shin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, HI., Kim, EJ., Kim, SJ. et al. Influence of ZnO precipitation on the cycling stability of rechargeable Zn–air batteries. J Appl Electrochem 45, 335–342 (2015). https://doi.org/10.1007/s10800-015-0793-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0793-4

Keywords

Navigation