Skip to main content
Log in

Performance enhancement of Sn–Sb–Co alloy film anode for lithium-ion batteries via post electrodissolution treatment

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Sn–Sb–Co alloy films prepared via co-electroplating and post-electrodissolution treatment were studied as anode materials for lithium-ion batteries. The alloy was composed of pure Sn, Sn–Sb, and Sn–Co alloy phases. During post-electrodissolution, the easy dissolution of Sn phase resulted in an increase in Sb and Co contents. Electrochemical measurements showed improved initial capacity and capacity retention with increasing electrodissolution treatment time. For the sample subjected to 10 min of electrodissolution treatment, the capacity remained at 580 mAh g−1 at the 50th cycle. Post-electrodissolution was proven to be an effective method to improve the electrochemical performance of ternary Sn-based alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  CAS  Google Scholar 

  2. Winter M, Besenhard JO (1999) Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim Acta 45:31–50

    Article  CAS  Google Scholar 

  3. Courtney I, Dahn J (1997) Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites. J Electrochem Soc 144:2045–2052

    Article  CAS  Google Scholar 

  4. Sivashanmugam A, Kumar TP, Renganathan NG, Gopukumar S, Wohlfahrt-Mehrens M, Garche J (2005) Electrochemical behavior of Sn/SnO2 mixtures for use as anode in lithium rechargeable batteries. J Power Sources 144:197–203

    Article  CAS  Google Scholar 

  5. Ui K, Kikuchi S, Kadoma Y, Kumagai N, Ito S (2008) Electrochemical characteristics of Sn film prepared by pulse electrodeposition method as negative electrode for lithium secondary batteries. J Power Sources 189:224–229

    Article  Google Scholar 

  6. Huggins RA (1999) Lithium alloy negative electrodes. J Power Sources 81:13–19

    Article  Google Scholar 

  7. Yu Y, Gu L, Wang C, Dhanabalan A, van Aken P, Maier J (2009) Encapsulation of Sn@carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in lithium-based batteries. Angew Chem 48:6485–6489

    Article  CAS  Google Scholar 

  8. Kim MG, Sim S, Cho J (2010) Novel core-shell Sn–Cu anodes for lithium rechargeable batteries prepared by a redox-transmetalation reaction. Adv Mater 22:5154–5158

    Article  CAS  Google Scholar 

  9. Ke FS, Huang L, Cai JS, Sun SG (2007) Electroplating synthesis and electrochemical properties of macroporous Sn–Cu alloy electrode for lithium-ion batteries. Electrochim Acta 52:6741–6747

    Article  CAS  Google Scholar 

  10. Tan CH, Qi GW, Li YP, Guo J, Wang X, Kong DL, Wang HJ, Zhang SY (2012) Sn–Cu alloy materials with optimized nanoporous structure and enhanced performance for lithium-ion batteries prepared by dealloying. Int J Electrochem Sci 7:10303–10312

    CAS  Google Scholar 

  11. Mukaibo H, Sumi T, Yokoshima T, Momma T, Osaka T (2003) Electrodeposited Sn–Ni alloy film as a high capacity anode material for lithium-ion secondary batteries. Electrochem Solid-State Lett 6:A218–A220

  12. Hassoun J, Panero S, Simon P, Taberna PL, Scrosati B (2007) High-rate, long-life Ni–Sn nanostructured electrodes for lithium-ion batteries. Adv Mater 19:1632–1635

    Article  CAS  Google Scholar 

  13. Kotobuki M, Okada N, Kanamura K (2011) Design of a micro-pattern structure for a three dimensionally macroporous Sn–Ni alloy anode with high areal capacity. Chem Commun 47:6144–6146

    Article  CAS  Google Scholar 

  14. Tan CH, Qi GW, Li YP, Guo J, Wang X, Kong DL, Wang HJ, Zhang SY (2013) The improved performance of porous Sn–Ni alloy as anode materials for lithium-ion battery prepared by electrochemical dissolution treatment. Int J Electrochem Sci 8:1966–1975

    CAS  Google Scholar 

  15. Ke FS, Huang L, Wei HB, Cai JS, Fan XY, Yang FZ, Sun SG (2007) Fabrication and properties of macroporous tin–cobalt alloy film electrodes for lithium-ion batteries. J Power Sources 170:450–455

    Article  CAS  Google Scholar 

  16. Du ZJ, Zhang SC (2011) Enhanced electrochemical performance of Sn–Co nanoarchitectured electrode for lithium ion batteries. J Phys Chem C 115:23603–23609

    Article  CAS  Google Scholar 

  17. Tamura N, Fujimoto A, Kamino M, Fujitani S (2004) Mechanical stability of Sn–Co alloy anodes for lithium secondary batteries. Electrochim Acta 49:1949–1956

    Article  CAS  Google Scholar 

  18. Tan CH, Qi GW, Li YP, Guo J, Wang X, Kong DL, Wang HJ, Zhang SY (2013) Performance enhancement of Sn–Co alloys for lithium-ion battery by electrochemical dissolution treatment. J Alloy Compd 574:206–211

    Article  CAS  Google Scholar 

  19. Wang F, Zhao M, Song X (2008) Nano-sized SnSbCux alloy anodes prepared by co-precipitation for Li-ion batteries. J Power Sources 175:558–563

    Article  CAS  Google Scholar 

  20. Tabuchi T, Hochgatterer N, Ogumi Z, Winter M (2009) Ternary Sn–Sb–Co alloy film as new negative electrode for lithium-ion cells. J Power Sources 188:552–557

    Article  CAS  Google Scholar 

  21. Ke FS, Huang L, Solomon BC, Wei GZ, Xue LJ, Zhang B, Li JT, Zhou XD, Sun SG (2012) Three-dimensional nanoarchitecture of Sn–Sb–Co alloy as an anode of lithium-ion batteries with excellent lithium storage performance. J Mater Chem 22:17511–17517

    Article  CAS  Google Scholar 

  22. Yu Y, Gu L, Lang XY, Zhu CB, Fujita T, Chen MW, Maier J (2011) Li Storage in 3D nanoporous Au-supported nanocrystalline tin. Adv Mater 23:2443–2447

    Article  CAS  Google Scholar 

  23. Ke F, Huang L, Jiang H, Wei H, Yang F, Sun S (2007) Fabrication and properties of three-dimensional macroporous Sn–Ni alloy electrodes of high preferential (110) orientation for lithium ion batteries. Electrochem Commun 9:228–232

    Article  CAS  Google Scholar 

  24. Fan XY, Ke FS, Wei GZ, Huang L, Sun SG (2009) Sn–Co alloy anode using porous Cu as current collector for lithium ion battery. J Alloys Compd 476:70–73

    Article  CAS  Google Scholar 

  25. Kim R, Nam D, Kwon H (2010) Electrochemical performance of a tin electrodeposit with a multi-layered structure for Li-ion batteries. J Power Sources 195:5067–5070

    Article  CAS  Google Scholar 

  26. Xue LJ, Xu YF, Huang L, Ke FS, He Y, Wang YX, Wei GZ, Li JT, Sun SG (2011) Lithium storage performance and interfacial processes of three dimensional porous Sn–Co alloy electrodes for lithium-ion batteries. Electrochim Acta 56:5979–5987

    Article  CAS  Google Scholar 

  27. Goâmez E, Us EG, Ent JT, Alcobe X, Valleâs E (2001) Tin–cobalt electrodeposition from sulfate-gluconate baths. J Appl Electrochem 31:349–354

    Article  Google Scholar 

  28. Hu RZ, Liu H, Zeng MQ, Liu JW, Zhu M (2012) Progress on Sn-based thin-film anode materials for lithium-ion batteries. J Chin Sci Bull 57:4119–4130

    Article  CAS  Google Scholar 

  29. Morimoto H, Tobishima SI, Negishi H (2005) Anode behavior of electroplated rough surface Sn thin films for lithium-ion batteries. J Power Sources 146:469–472

  30. Li H, Zhu GY, Huang XJ, Chen LQ (2000) Synthesis and electrochemical performance of dendrite-like nanosized SnSb alloy prepared by co-precipitation in alcohol solution at low temperature. J Mater Chem 10:693–696

    Article  Google Scholar 

  31. Yang J, Winter M, Besenhard JO (1996) Small particle size multiphase Li-alloy anodes for lithium-ion batteries. Solid State Ionics 90:281–287

    Article  CAS  Google Scholar 

  32. Besenhard JO, Yang J, Winter M (1997) Will advanced lithium-alloy anodes have a chance in lithium-ion batteries. J Power Sources 68:87–90

    Article  CAS  Google Scholar 

  33. Courtney IA, McKinnon WR, Dahn JR (1999) On the aggregation of tin in SnO composite glasses caused by the reversible reaction with lithium. J Electrochem Soc 146:59–68

    Article  CAS  Google Scholar 

  34. Courtney IA, Dahn JR (1997) Key factors controlling the reversibility of the reaction of lithium with SnO2 and Sn2BPO6 glass. J Electrochem Soc 144:2943–2948

    Article  CAS  Google Scholar 

  35. Ionica-Bousquet CM, Lippens PE, Aldon L, Olivier-Fourcade J, Jumas JC (2006) In situ 119Sn Mössbauer effect study of Li–CoSn2 electrochemical system. Chem Mater 18:6442–6447

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Natural Science Foundation of Shandong Province (Project No. ZR2009BM012), the 973 Project of China (No. 2011CB935901) and Open Project of State Key Laboratory of Crystal Material (KF1209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Yong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, XJ., Tan, CH., Dai, XH. et al. Performance enhancement of Sn–Sb–Co alloy film anode for lithium-ion batteries via post electrodissolution treatment. J Appl Electrochem 45, 115–122 (2015). https://doi.org/10.1007/s10800-014-0781-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-014-0781-0

Keywords

Navigation