Skip to main content
Log in

Characterization of CuInS2 thin films prepared by one-step electrodeposition

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

CuInS2 thin films were fabricated by one-step electrochemical deposition from a single alkaline aqueous solution and using conductive glass as the substrate. The electrolyte consisted in 0.01 mol L−1 CuCl2, 0.01 mol L−1 InCl3, 0.5 mol L−1 Na2SO3 and 0.2 mol L−1 Na3C3H5O(COO)3 (CitNa) at pH 8. The films were analyzed using a variety of techniques such as X-ray diffractometry, micro-Raman spectroscopy, X-ray energy dispersive spectroscopy, X-ray photoelectron spectroscopy and photoelectrochemistry. After carrying out a thermal treatment in sulfur vapor, chalcopyrite CuInS2 thin films were obtained. Etching the films in KCN solution was found to be a key step, enabling a final adjustment in the stoichiometry. These thin films exhibited p-type semiconductor behavior with the bandgap of 1.43 eV. The results show that electrodeposition provides a cost-effective and versatile method for the preparation of thin films of CuInS2, even when acidic precursors need to be avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cheng K-W, Chiang W-H (2011) Effect of [Cu]/[Cu + In] ratio in the solution bath on the growth and physical properties of CuInS2 film using one-step electrodeposition. J Electroanal Chem 661(1):57–65. doi:10.1016/j.jelechem.2011.07.013

    Article  CAS  Google Scholar 

  2. Valdés MH, Berruet M, Goossens A, Vázquez M (2010) Spray deposition of CuInS2 on electrodeposited ZnO for low-cost solar cells. Surf Coat Tech 204(24):3995–4000. doi:10.1016/j.surfcoat.2010.05.028

    Article  Google Scholar 

  3. Xu XH, Wang F, Liu JJ, Park KC, Fujishige M (2011) A novel one-step electrodeposition to prepare single-phase CuInS2 thin films for solar cells. Sol Energy Mater Sol Cells 95(2):791–796. doi:10.1016/j.solmat.2010.10.025

    Article  CAS  Google Scholar 

  4. Liu R, Liu Y, Liu C, Luo S, Teng Y, Yang L, Yang R, Cai Q (2011) Enhanced photoelectrocatalytic degradation of 2,4-dichlorophenoxyacetic acid by CuInS2 nanoparticles deposition onto TiO2 nanotube arrays. J Alloy Compd 509(5):2434–2440. doi:10.1016/j.jallcom.2010.11.040

    Article  CAS  Google Scholar 

  5. Goossens A, Hofhuis J (2008) Spray-deposited CuInS2 solar cells. Nanotechnology. doi:10.1088/0957-4484/19/42/424018

    Google Scholar 

  6. Terasako T, Uno Y, Inoue S, Kariya T, Shirakata S (2006) Structural, optical and electrical properties of CuInS2 thin films prepared by chemical spray pyrolysis. Phys Status Solidi (c) 3(8):2588–2591. doi:10.1002/pssc.200669597

    Article  CAS  Google Scholar 

  7. Amara A, Rezaiki W, Ferdi A, Hendaoui A, Drici A, Guerioune M, Bernède JC, Morsli M (2007) Electrical and optical characterisation of CuInS2 crystals and polycrystalline coevaporated thin films. Sol Energy Mater Sol Cells 91(20):1916–1921. doi:10.1016/j.solmat.2007.07.007

    Article  CAS  Google Scholar 

  8. Chang C-C, Liang C-J, Cheng K-W (2009) Physical properties and photoresponse of Cu–Ag–In–S semiconductor electrodes created using chemical bath deposition. Sol Energy Mater Sol Cells 93(8):1427–1434. doi:10.1016/j.solmat.2009.03.014

    Article  CAS  Google Scholar 

  9. Yukawa T, Kuwabara K, Koumoto K (1996) Electrodeposition of CuInS2 from aqueous solution (II) electrodeposition of CuInS2 film. Thin Solid Films 286(1–2):151–153. doi:10.1016/S0040-6090(96)08545-8

    Article  CAS  Google Scholar 

  10. Nakamura S, Yamamoto A (1997) Preparation of CuInS2 films with sufficient sulfur content and excellent morphology by one-step electrodeposition. Sol Energy Mater Sol Cells 49(14):415–421. doi:10.1016/S0927-0248(97)00122-0

    Article  CAS  Google Scholar 

  11. Nakamura S, Yamamoto A (2003) Electrodeposited CuInS2 based thin film solar cells. Sol Energy Mater Sol Cells 75(1–2):81–86. doi:10.1016/S0927-0248(02)00097-1

    Article  CAS  Google Scholar 

  12. Sanchez S, Aldakov D, Rouchon D, Rapenne L, Delamoreanu A, Lévy-Clémentm C, Ivanova V (2013) Sensitization of ZnO nanowire arrays with CuInS2 for extremely thin absorber solar cells. J Renew Sust Energy. doi:10.1063/1.4791780

    Google Scholar 

  13. Yuan J, Shao C, Zheng L, Fan M, Lu H, Hao C, Tao D (2014) Fabrication of CuInS2 thin film by electrodeposition of Cu–In alloy. Vacuum 99:196–203. doi:10.1016/j.vacuum.2013.06.005

    Article  CAS  Google Scholar 

  14. Lu L, Wang Y, Li X (2012) Influence of processing parameters on the preparation of CuInS2 thin film by one-step electrodeposition as the solar cell absorber. Surf. Coat. Tech. 212:55–60. doi:10.1016/j.surfcoat.2012.03.097

    Article  CAS  Google Scholar 

  15. Martinez AM, Fernández AM, Arriaga LG, Cano U (2006) Preparation and characterization of Cu–In–S thin films by electrodeposition. Mater Chem Phys 95(2–3):270–274. doi:10.1016/j.matchemphys.2005.06.018

    Article  CAS  Google Scholar 

  16. Asenjo B, Chaparro AM, Gutiérrez MT, Herrero J (2006) Electrochemical growth and properties of CuInS2 thin films for solar energy conversion. Thin Solid Films 511–512:117–120. doi:10.1016/j.tsf.2005.11.092

    Article  Google Scholar 

  17. Berruet M, Vázquez M (2010) Electrodeposition of single and duplex layers of ZnO with different morphologies and electrical properties. Mater Sci Semicon Proc 13(4):239–244. doi:10.1016/j.mssp.2010.08.001

    Article  CAS  Google Scholar 

  18. Kärber E, Abass A, Khelifi S, Burgelman M, Katerski A, Krunks M (2013) Electrical characterization of all-layers-sprayed solar cell based on ZnO nanorods and extremely thin CIS absorber. Sol Energy 91:48–58. doi:10.1016/j.solener.2013.01.020

    Article  Google Scholar 

  19. Li Y, Liu Z, Wang Y, Liu Z, Han J, Ya J (2012) ZnO/CuInS2 core/shell heterojunction nanoarray for photoelectrochemical water splitting. Int J Hydrogen Energy 37(20):15029–15037. doi:10.1016/j.ijhydene.2012.07.117

    Article  CAS  Google Scholar 

  20. Berruet M, Valdés M, Ceré S, Vázquez M (2012) Cost-effective solar cells containing copper indium chalcogenides prepared by SILAR method. J Mater Sci 47(5):2454–2460. doi:10.1007/s10853-011-6067-6

    Article  CAS  Google Scholar 

  21. Bär M, Klaer J, Weinhardt L, Wilks RG, Krause S, Blum M, Yang W, Heske C, Schock H-W (2013) Cu2 − xS surface phases and their impact on the electronic structure of CuInS2 thin films—a hidden parameter in solar cell optimization. Adv Energy Mater 3(6):777–781. doi:10.1002/aenm.201200946

    Article  Google Scholar 

  22. Wilhelm T, Berenguier B, Aggour M, Kanis M, Lewerenz H-J (2006) Efficient CuInS2 (CIS) solar cells by photoelectrochemical conditioning. C R Chim 9(2):294–300. doi:10.1016/j.crci.2005.02.047

    Article  CAS  Google Scholar 

  23. He YB, Krämer T, Österreicher I, Polity A, Meyer BK, Hardt M (2005) Post-growth treatment effects on properties of CuInS2 thin films deposited by RF reactive sputtering. Semicond Sci Tech 20(8):685. doi:10.1088/0268-1242/20/8/006

    Article  CAS  Google Scholar 

  24. Wagner WMRCD, Davis LE, Moulder JF, Muilengerg GE (1978) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, Minnesota

    Google Scholar 

  25. Álvarez-García J, Marcos-Ruzafa J, Pérez-Rodríguez A, Romano-Rodríguez A, Morante JR, Scheer R (2000) MicroRaman scattering from polycrystalline CuInS2 films: structural analysis. Thin Solid Films 361:208–212. doi:10.1016/S0040-6090(99)00847-0

    Article  Google Scholar 

  26. Rudigier E, Alvarez-Garcia J, Luck I, Klaer J, Scheer R (2003) Quality assessment of chalcopyrite thin films using Raman spectroscopy. J Phys Chem Solids 64(9–10):1977–1981. doi:10.1016/S0022-3697(03)00154-9

    Article  CAS  Google Scholar 

  27. Oja I, Nanu M, Katerski A, Krunks M, Mere A, Raudoja J, Goossens A (2005) Crystal quality studies of CuInS2 films prepared by spray pyrolysis. Thin Solid Films 480–481:82–86. doi:10.1016/j.tsf.2004.11.013

    Article  Google Scholar 

  28. Lee DY, Kim J (2010) Characterization of sprayed CuInS2 films by XRD and Raman spectroscopy measurements. Thin Solid Films 518(22):6537–6541. doi:10.1016/j.tsf.2010.03.062

    Article  CAS  Google Scholar 

  29. Berruet M, Schreiner WH, Ceré S, Vázquez M (2011) Deposition and characterization of CuInSe2 films for solar cells using an optimized chemical route. J Alloy Compd 509(6):3019–3024. doi:10.1016/j.jallcom.2010.11.190

    Article  CAS  Google Scholar 

  30. Kim CR, Han SY, Chang CH, Lee TJ, Ryu SO (2010) Synthesis and characterization of CuInSe2 thin films for photovoltaic cells by a solution-based deposition method. Curr Appl Phys 10(3, Supplement): S383–S386. doi: 10.1016/j.cap.2010.01.006

  31. Chen H, Yu SM, Shin DW, Yoo JB (2010) Solvothermal Synthesis and Characterization of Chalcopyrite CuInSe2 Nanoparticles. Nanoscale Res Lett 5(1):217–223. doi:10.1007/s11671-009-9468-6

    Article  CAS  Google Scholar 

  32. Calderón C, Oyola JS, Bartolo-Pérez P, Gordillo G (2013) Studies in CuInS2 based solar cells, including ZnS and In2S3 buffer layers. Mater Sci Semicon Proc 16(6):1382–1387. doi:10.1016/j.mssp.2013.06.011

    Article  Google Scholar 

  33. Katerski A, Mere A, Kazlauskiene V, Miskinis J, Saar A, Matisen L, Kikas A, Krunks M (2008) Surface analysis of spray deposited copper indium disulfide films. Thin Solid Films 516(20):7110–7115. doi:10.1016/j.tsf.2007.12.027

    Article  CAS  Google Scholar 

  34. Han S, Kong M, Guo Y, Wang M (2009) Synthesis of copper indium sulfide nanoparticles by solvothermal method. Mater Lett 63(13–14):1192–1194. doi:10.1016/j.matlet.2009.02.032

    Article  CAS  Google Scholar 

  35. Berruet M, Pereyra CJ, Mhlongo GH, Dhlamini MS, Hillie KT, Vázquez M, Marotti RE (2013) Optical and structural properties of nanostructured ZnO thin films deposited onto FTO/glass substrate by a solution-based technique. Opt Mater 35(12):2721–2727. doi:10.1016/j.optmat.2013.08.018

    Article  CAS  Google Scholar 

  36. Cayzac R, Boulc’h F, Bendahan M, Pasquinelli M, Knauth P (2008) Preparation and optical absorption of electrodeposited or sputtered, dense or porous nanocrystalline CuInS2 thin films. C R Chim 11(9):1016–1022. doi:10.1016/j.crci.2008.02.003

    Article  CAS  Google Scholar 

  37. Bandyopadhyaya S, Chaudhuri S, Pal AK (2000) Synthesis of CuInS2 films by sulphurization of Cu/In stacked elemental layers. Sol Energy Mater Sol Cells 60(4):323–339. doi:10.1016/S0927-0248(99)00064-1

    Article  CAS  Google Scholar 

  38. Xu X, Wang F, Liu J, Ji J (2010) Effect of potassium hydrogen phthalate (C8H5KO4) on the one-step electrodeposition of single-phase CuInS2 thin films from acidic solution. Electrochim Acta 55(15):4428–4435. doi:10.1016/j.electacta.2010.02.077

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support received from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, PICT 2634), and Universidad Nacional de Mar del Plata (UNMdP). We are also grateful to PhD Mariela Desimone for her assistance with XRD and Raman measurements and Eng. Sheila Omar for her assistance with the profilometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Vázquez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Iorio, Y., Berruet, M., Schreiner, W. et al. Characterization of CuInS2 thin films prepared by one-step electrodeposition. J Appl Electrochem 44, 1279–1287 (2014). https://doi.org/10.1007/s10800-014-0752-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-014-0752-5

Keywords

Navigation