Skip to main content
Log in

LiFePO4 batteries with enhanced lithium-ion-diffusion ability due to graphene addition

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, graphene was added to LiFePO4 via a hydrothermal method to improve the lithium-ion-diffusion ability of LiFePO4. The influence of graphene addition on LiFePO4 was studied by X-ray diffraction (XRD), field emission scanning electron microscopy, transmission electron microscopy, cyclic voltammetry, cycling test, and AC impedance analysis. The addition of graphene to LiFePO4 resulted in the formation of a LiFePO4–graphene composite; XRD observations revealed the composite to have a single phase with an olivine-type structure. Furthermore, LiFePO4 particles in the composite were stacked on the graphene sheet surface, thereby enabling the composite to form an effective conducting network and facilitate the penetration of the surface of active materials by an electrolyte. The lithium-ion-diffusion ability of the LiFePO4–graphene composite was greater than that of pure LiFePO4. Of a number of materials studied [namely, pure LiFePO4, LiFePO4–graphene (1 %), LiFePO4–graphene (5 %), and LiFePO4–graphene (8 %)], LiFePO4–graphene (5 %) delivered the best electrochemical performance with a lithium-ion-diffusion coefficient of 8.18 × 10−12 cm2 s−1 and the highest specific discharge capacity of 149 mAh g−1 at 0.17 C; in contrast, the corresponding values for pure LiFePO4 were 3.01 × 10−12 cm2 s−1 and 109 mAh g−1, respectively. Further, LiFePO4–graphene (5 %) showed a very high specific discharge capacity of 170 mAh g−1 at 0.1 C, which is equal to the theoretical capacity of LiFePO4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 11:188–1194. doi:10.1149/1.1837571

    Google Scholar 

  2. Wang WL, Nguyen VH, Jin EM, Gu HB (2013) Si–SnO composite as an anode material in lithium ion batteries using novel polymer binder. Mater Express 3:273–279. doi:10.1166/mex.2013.1124

    Article  CAS  Google Scholar 

  3. Gu HB, Jun DK, Park GC, Jin B, Jin EM (2007) Nanosized LiFePO4 cathode materials for lithium ion batteries. J Nanosci Nanotechnol 7:3980–3984. doi:10.1166/jnn.2007.079

    Article  CAS  Google Scholar 

  4. Bard AJ, Faulkner LR (2001) Electrochemical Methods, 2nd edn. Wiley, New York

    Google Scholar 

  5. Jin EM, Jin B, Jun DK, Park KH, Gu HB, Kim KW (2008) A study on the electrochemical characteristics of LiFePO4 cathode for lithium polymer batteries by hydrothermal method. J Power Sources 178:801–806. doi:10.1016/j.jpowsour

    Article  CAS  Google Scholar 

  6. Shenouda AY, Liu HK (2009) Studies on electrochemical behaviour of zinc-doped LiFePO4 for lithium battery positive electrode. J Alloy Compd 477:498–503. doi:10.1016/j.jallcom.2008.10.077

    Article  CAS  Google Scholar 

  7. Amin R, Lin C, Peng J, Weichert K, Acartürk T, Starke U, Maier J (2009) Silicon-doped LiFePO4 single crystals: growth, conductivity behaviour and diffusivity. Adv Funct Mater 19:1697–1704. doi:10.1002/adfm.200801604

    Article  CAS  Google Scholar 

  8. Abbate M, Lala SM, Montoro LA, Rosolenb JM (2005) Ti-, Al-, and Cu-doping induced gap states in LiFePO4. Electrochem Solid-State Lett 8:A288–A290. doi:10.1149/1.1895286

    Article  CAS  Google Scholar 

  9. Prosini PP, Zane D, Pasquali M (2001) Improved electrochemical performance of a LiFePO4-based composite cathode. Electrochim Acta 46:3517–3523. doi:10.1016/s0013-4686(01)00631-4

    Article  CAS  Google Scholar 

  10. Li H, Wang ZX, Chen LQ, Huang XJ (2009) Research on advanced materials for Li-ion batteries. Adv Mater 21:4593–4607. doi:10.1002/adma.200901710

    Article  Google Scholar 

  11. Yamada A, Chung SC, Hinikuma K (2001) Optimized LiFePO4 for lithium battery cathodes. J Electrochem Soc 148:A224–A229. doi:10.1149/1.1348257

    Article  CAS  Google Scholar 

  12. Nguyen VH, Jin EM, Gu HB (2013) Synthesis and electrochemical properties of LiFePO4-graphite nanofiber composites as cathode materials for lithium ion batteries. J Power Sources 244:586–591. doi:10.1016/j.jpowsour.2013.01.073

    Article  CAS  Google Scholar 

  13. Hu LH, Wu FY, Lin CT, N.K A, Li LJ (2013) Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity. Nat Commun 4:1687. doi:10.1038/ncomms2705

  14. Yang J, Wang J, Tang Y, Wang D, Li X, Hu Y, Li R, Liang G, Sham TK, Sun X (2013) LiFePO4–graphene as a superior cathode material for rechargeable lithium batteries: impact of stacked graphene and unfolded graphene. Energy Environ Sci 6:1521–1528. doi:10.1039/c3ee24163g

    Article  CAS  Google Scholar 

  15. Liu T, Zhao L, Zhu J, Wang B, Guo C, Wang D (2014) The composite electrode of LiFePO4 cathode materials modified with exfoliated graphene from expanded graphite for high power Li-ion batteries. J Mater Chem A 2:2822–2829. doi:10.1039/c3ta14713d

    Article  CAS  Google Scholar 

  16. Luo WB, Chou SL, Zhai YC, Liu HK (2014) Self-assembled graphene and LiFePO4 composites with superior high rate capability for lithium ion batteries. J Mater Chem A 2:4927–4931. doi:10.1039/c3ta14471b

    Article  CAS  Google Scholar 

  17. Wang L, Wang HB, Liu ZH, Xiao C, Dong SM, Han PX, Zhang ZY, Zhang XY, Bi CF, Cui GL (2010) A facile method of preparing mixed conducting LiFePO4/graphene composites for lithium-ion batteries. Solid State Ionics 181:1685–1689. doi:10.1016/j.ssi.2010.09.056

    Article  CAS  Google Scholar 

  18. Wang Y, Feng ZS, Chen JJ, Zhang C (2012) Synthesis and electrochemical performance of LiFePO4/graphene composites by solid-state reaction. Mate Lett 71:54–56. doi:10.1016/j.jpowsour.2012.02.032

    Article  CAS  Google Scholar 

  19. Kim WK, Ryu WHM, Han DW, Lim SJ, Eom JY, Kwon HS (2014) Fabrication of graphene embedded LiFePO4 using a catalyst assisted self assembly method as a cathode material for high power lithium-ion batteries. ACS Appl Mater Interfaces 6:4731–4736. doi:10.1021/am405335k

    Article  CAS  Google Scholar 

  20. Ding Y, Jiang Y, Xua F, Yin J, Ren H, Zhuo Q, Long Z, Zhang P (2010) Preparation of nano-structured LiFePO4/graphene composites by co-precipitation method. Electrochem Commun 12:10–13. doi:10.1016/j.elecom.2009.10.023

    Article  CAS  Google Scholar 

  21. Wang DY, Li H, Shi SQ, Huang XJ, Chen LQ (2005) Improving the rate performance of LiFePO4 by Fe-site doping. Electrochim Acta 5:2955–2958. doi:10.1016/j.electacta.2004.11.045

    Article  Google Scholar 

  22. Wang WL, Jin EM, Gu HB (2012) Electrochemical performance of lithium ion phosphate by adding graphite nanofiber for lithium ion batteries. Trans Electr Electron Mater 13:121–124. doi:10.4313/TEEM.2012.13.3.121

    Article  Google Scholar 

  23. Nguyen VH, Wang WL, Jin EM, Gu HB (2013) Electrochemical characterization of LiFePO4/poly(sodium 4-styrenesulfonate)-multi walled carbon nanotube composite cathode material for lithium ion batteries. J Alloy Compd 569:29–34. doi:10.1016/j.jallcom.2013.03.139

    Article  CAS  Google Scholar 

  24. Nguyen HV, Jin EM, Gu HB (2012) Preparation and electrochemical properties of LiFePO4-PSS composite cathode for lithium-ion batteries. Trans Electr Electron Mater 13:177–180. doi:10.4313/TEEM.2012.13.4.177

    Article  Google Scholar 

  25. Culluity BD, Stock SR (2011) Element of X-ray diffraction, 3rd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  26. Fu ZW, Guan XF, Li LP, Li GS, Zheng J (2011) Microstructural characteristics of hydrothermally synthesized LiFePO4 and relevant impacts on the electrochemical performance. Chinese J Struct Chem 30:975–986

    CAS  Google Scholar 

  27. He P, Zhao X, Wang YG, Cheng L, Xia YY (2008) Lithium-ion intercalation behaviour of LiFePO4 in aqueous and nonaqueous electrolyte solutions. J Electrochem Soc 155:A144–A150. doi:10.1149/1.2815609

    Article  CAS  Google Scholar 

  28. Rui XH, Ding N, Liu J, Li C, Chen CH (2010) Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material. Electrochim Acta 55:2384–2390. doi:10.1016/j.electacta.2009.11.096

    Article  CAS  Google Scholar 

  29. Franger S, Bourbon C, Le Cras F (2004) Optimized lithium iron phosphate for high-rate electrochemical applications. J Electrochem Soc 151:A1024–A1027. doi:10.1149/1.1758721

    Article  CAS  Google Scholar 

  30. Sauvage F, Baudrin E, Gengembre L, Tarascon JM (2005) Effect of texture on the electrochemical properties of LiFePO4 thin films. Solid State Ionics 176:1869–1876. doi:10.1016/j.ssi.2005.05.012

    Article  CAS  Google Scholar 

  31. Sauvage F, Baudrin E, Morcrette M, Tarascon JM (2004) Pulsed laser deposition and electrochemical properties of LiFePO4 thin films. Electrochem Solid State Lett 7:A15–A18. doi:10.1149/1.1795052

    Article  CAS  Google Scholar 

  32. Delacourt C, Laffont L, Bouchet R, Wurm C, Leriche JB, Morcrette M, Tarascon JM, Masquelier C (2005) Towards the understanding of electrical limitations (electronic, ionic) in LiMPO4(M = Fe, Mn) electrode materials. J Electrochem Soc 152:A913–A921. doi:10.1149/1.1884787

    Article  CAS  Google Scholar 

  33. Kanoh H, Feng Q, Miyai Y, Ooi K (1995) Kinetic properties of a Pt/Lambda-MnO2 electrode for the electroinsertion of lithium ions in an aqueous phase. J Electrochem Soc 142:702–707. doi:10.1149/1.2048520

    Article  CAS  Google Scholar 

  34. Zhao D, Feng YL, Wang YG, Xia YY (2013) Electrochemical performance comparison of LiFePO4 supported by various carbon materials. Electrochim Acta 88:632–638. doi:10.1039/C2CP24062A

    Article  CAS  Google Scholar 

  35. Nguyen VH, Wang WL, Jin EM, Gu HB (2013) Impacts of different polymer binders on electrochemical properties of LiFePO4 cathode. Appl Surf Sci 282:444–449. doi: 10.1016/j.apsusc.2013.05.149

    Article  CAS  Google Scholar 

  36. Wang K, Cai R, Yuan T, Yu X, Ran R, Shao ZP (2009) Process investigation, electrochemical characterization and optimization of LiFePO4/C composite from mechanical activation using sucrose as carbon source. Electrochim Acta 54:2861–2868. doi:10.1016/j.electacta.2008.11.012

    Article  CAS  Google Scholar 

  37. Jin B, Jin EM, Park KH, Gu HB (2008) Electrochemical properties of LiFePO4-multiwalled carbon nanotubes composite cathode materials for lithium polymer battery. Electrochem Commun 10:1537–1540. doi:10.1016/j.elecom.2008.08.001

    Article  CAS  Google Scholar 

  38. Sun K, Dillon SJ (2011) A mechanism for the improved rate capability of cathodes by lithium phosphate surficial films. Electrochem Commun 13:200–202. doi:10.1016/j.elecom.2010.12.013

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hal-Bon Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, V.H., Gu, HB. LiFePO4 batteries with enhanced lithium-ion-diffusion ability due to graphene addition. J Appl Electrochem 44, 1153–1163 (2014). https://doi.org/10.1007/s10800-014-0717-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-014-0717-8

Keywords

Navigation