Skip to main content

Advertisement

Log in

Zinc deposition and dissolution in sulfuric acid onto a graphite–resin composite electrode as the negative electrode reactions in acidic zinc-based redox flow batteries

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Electrodeposition and dissolution of zinc in sulfuric acid were studied as the negative electrode reactions in acidic zinc-based redox flow batteries. The zinc deposition and dissolution is a quasi-reversible reaction with a zinc ion diffusion coefficient of 4.6 × 10−6 cm2 s−1 obtained. The increase of acid concentration facilitates an improvement in the kinetics of zinc electrodeposition–dissolution process. But too high acid concentration would result in a significant decrease in charge efficiency. The performance of the zinc electrode in a three-electrode system with magnetic stirring was also studied as a function of Zn(II) ion concentration, sulfuric acid concentration, current density, and the addition of additives in 1 M H2SO4 medium. The optimum electrolyte composition is suggested at high zinc(II) concentration (1.25 M) and moderate sulfuric acid concentration (1.0–1.5 M) at a current density range of 20–30 mA cm−2. Whether in acid-free solution or in sulfuric acid solution with or without additives, no dendrite formation is observed after zinc electrodeposition for 1 h at 20 mA cm−2. The energy efficiency is improved from 77 % in the absence of additives in 1 M H2SO4 medium to over 80 % upon the addition of indium oxide or SLS–Sb(III) combined additive as hydrogen suppressants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Huang KL, Li XG, Liu SQ (2008) Renew Energy 33:186

    Article  CAS  Google Scholar 

  2. Yu JX, Yang HX, Ai XP (2001) J Power Sources 103:93

    Article  CAS  Google Scholar 

  3. Butler PC, Eidler PA, Grimes PC, Klassen SE, Miles RC (1994) In: Linden D (ed) Handbook of batteries, 3rd edn. McGraw Hill, New York

    Google Scholar 

  4. Cheng J, Zhang L, Yang YS, Wen YH (2007) Electrochem Commun 9:2639

    Article  CAS  Google Scholar 

  5. Wen YH, Cheng J, Ning SQ (2009) J Power Sources 188:301

    Article  CAS  Google Scholar 

  6. Zhang L, Cheng J, Yang YS (2008) J Power Sources 179:381

    Article  CAS  Google Scholar 

  7. Leung PK, Ponce de León C, Low CTJ, Walsh FC (2011) Electrochim Acta 56:6536

    Article  CAS  Google Scholar 

  8. Leung PK, Ponce de León C, Low CTJ, Walsh FC (2011) Electrochim Acta 56:2145

    Article  CAS  Google Scholar 

  9. Leung PK, Ponce de León C, Low CTJ, Shah AA, Walsh FC (2011) J Power Sources 196:5174

    Article  CAS  Google Scholar 

  10. DiAZ-Arista P, Meas Y, Ortega R, Trejo G (2005) J Appl Electrochem 35:217

    Article  CAS  Google Scholar 

  11. Trejo G, Ortega RB, Meas YV, Ozil P, Chainet E, Nguyen B (1998) J Electrochem Soc 145:4090

    Article  CAS  Google Scholar 

  12. Yu JX, Chen YY, Yang HX, Huang QA (1999) J Electrochem Soc 146:1789

    Article  CAS  Google Scholar 

  13. Saba AE, Elsherief AE (2000) Hydrometallurgy 54:91

    Article  CAS  Google Scholar 

  14. Gomes A, da Silva Pereira MI (2006) Electrochim Acta 52:863

    Article  CAS  Google Scholar 

  15. Alfantazi AM, Dreisinger DB (2003) Hydrometallurgy 69:99

    Article  CAS  Google Scholar 

  16. Gomes A, Viana AS, da Silva Pereira MI (2007) J Electrochem Soc 154:D452

    Article  CAS  Google Scholar 

  17. Gomes A, da Silva Pereira MI (2006) Electrochim Acta 51:1342

    Article  CAS  Google Scholar 

  18. Youssef KMS, Koch CC, Fedkiw PS (2004) J Electrochem Soc 151:C103

    Article  CAS  Google Scholar 

  19. Fang B, Iwasa S, Wei Y, Arai T, Kumagai M (2002) Electrochim Acta 47:3971

    Article  CAS  Google Scholar 

  20. Fletcher S, Halliday CS (1983) J Electroanal Chem 159:267

    Article  CAS  Google Scholar 

  21. Yu JX, Yang HX, Ai XP, Chen YY (2002) Russ J Electrochem 38:321

    Article  CAS  Google Scholar 

  22. Zhang QB, Hua YX (2009) Hydrometallurgy 99:249

    Article  CAS  Google Scholar 

  23. Saba AE, Elsherief AE (2000) Hydrometallurgy 54:91

    Article  CAS  Google Scholar 

  24. Tripathy BC, Das SC, Misra VN (2003) Hydrometallurgy 69:81

    Article  CAS  Google Scholar 

  25. Gomes A, da Silva Pereira MI (2006) Electrochim Acta 51:1342

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financed by the National Basic Research Program (973 Program) of China (2010CB227204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuehua Wen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, J., Wen, Y., Cheng, J. et al. Zinc deposition and dissolution in sulfuric acid onto a graphite–resin composite electrode as the negative electrode reactions in acidic zinc-based redox flow batteries. J Appl Electrochem 43, 541–551 (2013). https://doi.org/10.1007/s10800-013-0538-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-013-0538-1

Keywords

Navigation