Skip to main content
Log in

Influence of surface roughness on the electrochemical behavior of carbon steel

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of the surface roughness of carbon steel on corrosion properties was investigated using electrochemical tests, and surface and Kelvin probe force microscopy (KPFM) analyses. The results of electrochemical tests show that the corrosion rate of carbon steel is increased as the surface roughness increases. It was estimated using KPFM measurement that the difference in the Volta potential between the peak and the valley increased with increasing surface roughness. As the peak has a lower potential than that of the valley, the peak acts as an anode. The surface roughness affects the Volta potential, and the Volta potential difference is inversely proportional to electron work function (EWF). The larger difference in Volta potential between the peak and valley on the rougher surface and the smaller EWF accelerated the micro-galvanic corrosion between them. The surface analyses reveal that corrosion initiated along the peak lines. The results from this study suggest that an increase of surface roughness leads to a decrease of the corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Richardson T, Cottis B, Lindsay R, Lyon S, Scantlebury D, Scott H, Graham M (2010) Shreir’s corrosion, vol 4. Elsevier, Amsterdam

    Google Scholar 

  2. Fontana MG (1986) Corrosion engineering. McGraw-Hill, Singapore

    Google Scholar 

  3. Talbot DEJ, Talbot JDR (2007) Corrosion science and technology. CRC Press, Boca Raton

    Google Scholar 

  4. Schulze V (2006) Modern mechanical surface treatment. Wiley-VCH, Weinheim

    Google Scholar 

  5. Li W, Amirfazli A (2005) A thermordynamic approach for determining the contact angle hysteresis for superhydrophobic surfaces. J Colloid Interface Sci 292:195–201. doi:10.1016/j.jcis.2005.05.062

    Article  CAS  Google Scholar 

  6. Li W, Amirfazli A (2007) Microtextured superhydrophobic surfaces: a thermodynamic analysis. Adv Colloid Interface Sci 132:51–68. doi:10.1016/j.cis.2007.01.001

    Article  CAS  Google Scholar 

  7. Silverman DC (2004) The rotating cylinder electrode for examining velocity-sensitive corrosion-a review. Corrosion 60:1003–1023. doi:10.5006/1.3299215

    Article  CAS  Google Scholar 

  8. Ashcroft NW, Mermin ND (1976) Solid state physics. Saunders College Publishing, New York

    Google Scholar 

  9. Li W, Li DY (2006) Influence of surface morphology on corrosion and electronic behavior. Acta Mater 54:445–452. doi:10.1016/j.actamat.2005.09.017

    Article  CAS  Google Scholar 

  10. Ozawa R, Kaykham K, Hiraishi A, Suzuki Y, Mori N, Yaguchi T, Itoh J, Yamamoto S (1999) Field emission from flat metal surfaces covered with Ba atoms. Appl Surf Sci 146:162–168. doi:10.1016/S0169-4332(99)00032-X

    Article  CAS  Google Scholar 

  11. Kim JS, Cacialli F, Granström M, Friend RH, Johansson N, Salaneck WR, Daik R, Feast WJ (1999) Characterisation of the properties of surface-treated indium-tin oxide thin films. Synth Met 101:111–112. doi:10.1016/S0379-6779(98)01127-8

    Article  CAS  Google Scholar 

  12. Bergveld P, Hendrikse J, Olthuis W (1998) Theory and application of the material work function for chemical sensors based on the field effect principle. Meas Sci Technol 9:1801–1808. doi:10.1088/0957-0233/9/11/003

    Article  CAS  Google Scholar 

  13. Nazarov A, Thierry D (2007) Application of Volta potential mapping to determine metal surface defects. Electrochim Acta 52:7689–7696. doi:10.1016/j.electacta.2007.05.077

    Article  CAS  Google Scholar 

  14. Apachitei I, Fratila-Apachitei LE, Duszczyk J (2007) Microgalvanic activity of an Mg-Al-Ca-based alloy studied by scanning Kelvin probe force microscopy. Scr Mater 57:1012–1015. doi:10.1016/j.scriptamat.2007.08.002

    Article  CAS  Google Scholar 

  15. Cheran LE, Johnstone S, Sadeghi S, Thompson M (2007) Work-function measurement by high-resolution scanning Kelvin nanoprobe. Meas Sci Technol 18:567–578. doi:10.1088/0957-0233/18/3/005

    Article  CAS  Google Scholar 

  16. Schmutz P, Frankel GS (1998) Corrosion study of AA2024-T3 by scanning Kelvin probe force microscopy and in situ atomic force microscopy scratching. J Electrochem Soc 145:2295–2306. doi:10.1149/1.1838634

    Article  CAS  Google Scholar 

  17. Bockris JO’M, Reddy AKN (1998) Modern electrochemistry. Plenum Press, New York

    Google Scholar 

  18. Juzeliūnas E, Sudavičius A, Jüttner K, Fürbeth W (2003) Study of initial stages of Al-Mg alloy corrosion in water, chloride and Cu(II) environment by a scanning Kelvin probe and XPS. Electrochem Commun 5:154–158. doi:10.1016/S1388-2481(03)00015-8

    Article  Google Scholar 

  19. Williams G, Holness RJ, Worsley DA, McMurray HN (2004) Inhibition of corrosion-driven organic coating delamination on zinc by polyaniline. Electrochem Commun 6:549–555. doi:10.1016/j.elecom.2004.04.004

    Article  CAS  Google Scholar 

  20. Dubuisson E, Lavie P, Dalard F, Caire JP, Szunerits S (2006) Study of the atmospheric corrosion of galvanised steel in a micrometric electrolytic droplet. Electrochem Commun 8:911–915. doi:10.1016/j.elecom.2006.03.024

    Article  CAS  Google Scholar 

  21. Schütze M, Cahn RW, Haasen P, Kramer EJ (2000) Corrosion and environmental degradation. Wiley-VCH, Weinheim

    Google Scholar 

  22. Kim JG, Kim YW, Kang MC (2002) Corrosion characteristics of rigid polyurethane thermally insulated pipeline with insulation defects. Corrosion 58:175–181. doi:10.5006/1.3277318

    Article  CAS  Google Scholar 

  23. Nam ND, Kim JG (2010) Effect of niobium on the corrosion behaviour of low alloy steel in sulfuric acid solution. Corros Sci 52:3377–3384. doi:10.1016j.corsci.2010.06.010

    Article  CAS  Google Scholar 

  24. Moretti G, Guidi F, Grion G (2004) Tryptamine as a green iron corrosion inhibitor in 0.5 M deaerated sulphuric acid. Corros Sci 46:387–403. doi:10.1016/S0010-938X(03)00150-1

    Article  CAS  Google Scholar 

  25. Cottis R, Turgoose S (1999) Electrochemical impedance and noise. NACE International, Houston

    Google Scholar 

  26. López DA, Simison SN, de Sánchez SR (2003) The influence of steel microstructure on CO2 corrosion. EIS studies on the inhibition efficiency of benzimidazole. Electrochim Acta 48:845–854. doi:10.1016/S0013-4686(02)00776-4

    Article  Google Scholar 

  27. Bentiss F, Lebrini M, Vezin H, Traisnel M, Lagrené M (2009) Enhanced corrosion resistance of carbon steel in normal sulfuric acid medium by some macrocyclic polyether compounds containing a 1,3,4-thiadiazole moiety: AC impedance and computational studies. Corros Sci 51:2165–2173. doi:10.1016/j.corsci.2009.05.049

    Article  CAS  Google Scholar 

  28. Roberge PR (2000) Handbook of corrosion engineering. McGraw-Hill, New York

    Google Scholar 

  29. Flis J, Pickering HW, Osseo-Asare K (1998) Interpretation of impedance data for reinforcing steel in alkaline solution containing chlorides and acetates. Electrochim Acta 43:1921–1929. doi:10.1016/S0013-4686(97)10004-4

    Article  CAS  Google Scholar 

  30. Kramer M, Tomkiewicz M (1984) Porous electrodes. J Electrochem Soc 131:1283–1288. doi:10.1149/1.2115807

    Article  CAS  Google Scholar 

  31. Nyikos L, Pajkossy T (1985) Fractal dimension and fractional power frequency-dependent impedance of blocking electrodes. Electrochim Acta 30:1533–1540. doi:10.1016/0013-4686(85)80016-5

    Article  CAS  Google Scholar 

  32. Jonse DA (1996) Principles and prevention of corrosion. Prentice-Hall, NJ

    Google Scholar 

  33. Pound BG, Abdurrahman MH, Glucina MP, Wright GA, Sharp RM (1985) The corrosion of carbon steel and stainless steel in simulated geothermal media. Aust J Chem 38:1133–1140. doi:10.1071/CH9851133

    Article  CAS  Google Scholar 

  34. Smoluchowski R (1941) Anisotropy of the electronic work function of metals. Phys Rev 60:661–674. doi:10.1103/PhysRev.60.661

    Article  CAS  Google Scholar 

  35. Kim MJ, Jang YW, Yoo YH, Kim JJ, Kim JG (2010) Effect of specimen area on the corrosion rate of low alloy steel. J Korean Electrochem Soc 13:96–102. doi:10.5229/JKES.2010.13.2.096

    Article  CAS  Google Scholar 

  36. Salvago G, Magagnin L, Bestetti M (2002) Unified approach to localized and general corrosion of stainless steels. Electrochim Acta 47:1787–1793. doi:10.1016/S0013-4686(02)00014-2

    Article  CAS  Google Scholar 

  37. Saito S, Takeda K, Soumura T, Tani T, Maeda T (1994) Effects of surface roughness and patches on the work function of cobalt. Phys Status Solid A 142:K29–K32. doi:10.1002/pssa.2211420140

    Article  CAS  Google Scholar 

  38. Lang ND, Kohn W (1973) Surface-dipole barriers in simple metals. Phys Rev B 8:6010–6012. doi:10.1103/PhysRevB.8.6010

    Article  CAS  Google Scholar 

  39. Błoński P, Kiejna A (2007) Structural, electronic, and magnetic properties of bcc iron surfaces. Surf Sci 601:123–133. doi:10.1016/j.susc.2006.09.013

    Article  Google Scholar 

  40. Li W, Li DY (2005) On the correlation between surface roughness and work function in copper. J Chem Phys 122:064708. doi:10.1063/1.1849135

    Article  CAS  Google Scholar 

  41. Li W, Li DY (2005) Effect of surface geometrical configurations induced by microcracks on the electron work function. Acta Mater 53:3871–3878. doi:10-1016/j.actamat.2005.04.042

    Article  CAS  Google Scholar 

  42. Li W, Cai M, Zong Z, Yu S (2006) Variation of surface morphology and electronic behavior under dynamic tensile conditions. Appl Phys Lett 88:181902. doi:10.1063/1.2193048

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Korea Ministry of Knowledge Economy through the Strategic Technology Development Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung Gu Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.K., Park, I.J., Lee, D.Y. et al. Influence of surface roughness on the electrochemical behavior of carbon steel. J Appl Electrochem 43, 507–514 (2013). https://doi.org/10.1007/s10800-013-0534-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-013-0534-5

Keywords

Navigation