Skip to main content

Advertisement

Log in

Kinetic analysis of Li|Li+ interphase in an ionic liquid electrolyte

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Kinetic analysis of the Li|Li+ interphase in an electrolyte based on N-metyl-N-propylpyrrolidinium bis(trifluoromethanesulfon)imide ionic liquid (MPPyrrTFSI) and lithium bis(trifluoromethanesulfon)imide salt (LiTFSI) was performed. Li|electrolyte|Li and LiC6|electrolyte|Li cells were galvanostatically charged/discharged in order to form solid electrolyte interphase (SEI) protecting layer. SEM images showed that the surface of both Li and LiC6 anodes was covered with small particles. The fitting procedure of electrochemical impedance data taken at different temperatures gave three resistances (R el, R SEI, R ct) and hence, three lnR = f(T −1) straight lines of different slopes. Specific conductivity and activation energy of the conduction process of the liquid electrolyte, were ca. σ = 2.5 mS cm−1 (at T = 25.0 °C) and \( E_{\text{el}}^{\# } \) = 15 kJ mol−1. Activation energy for the conduction process in the SEI layer was ca. 56 kJ mol−1 in the case of the metallic lithium and 62 kJ mol−1 for the graphite anode. Activation energy of the charge transfer process, \( E_{\text{ct}}^{\# } \), for Li and LiC6 anodes was 71 and 65 kJ mol−1, respectively. Analysis of literature data for different electrolytes suggests that the \( E_{\text{ct}}^{\# } \) value for Li+ reduction may be approximated by 57 ± 5 kJ mol−1. Activation energy for the diffusion processes in the graphite electrode, detected from the Warburg coefficient, was ca 74 kJ mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Peled E (1979) The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. J Electrochem Soc 126:2047–2051

    Article  CAS  Google Scholar 

  2. Rahner D, Machill S, Siury K (1997) Passivity of lithium in organic solvents. J Power Sour 68:69–74

    Article  CAS  Google Scholar 

  3. Yazami R, Touzain P (1983) A reversible graphite-lithium negative electrode for electrochemical generators. J Power Sour 9:365–371

    Article  CAS  Google Scholar 

  4. Dey A (1977) Lithium anode film and organic and inorganic electrolyte batteries. Thin Solid Films 43:131–171

    Article  CAS  Google Scholar 

  5. Zaban A, Zinigrad E, Aurbach D (1996) Impedance spectroscopy of Li electrodes. 4. A general simple model of the Li-solution. Interphase in polar aprotic systems. J Phys Chem 100:3089–3101

    Article  CAS  Google Scholar 

  6. Aurbach D (2000) Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. J Power Sour 89:206–218

    Article  CAS  Google Scholar 

  7. Edstrom K, Herstedt M, Abraham DP (2006) A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries. J Power Sour 153:380–384

    Article  Google Scholar 

  8. Bryngelsson H, Stjerndahl M, Gustafsson T, Edstrom K (2007) How dynamic is the SEI? J Power Sour 174:970–975

    Article  CAS  Google Scholar 

  9. Peled E, Golodnitsky D (2004) SEI on lithium. In: Balbuena PB, Wang Y (eds) Lithium-ion batteries, solid-electrolyte interphase. Imperial College Press, London, pp 16–39

    Google Scholar 

  10. Holzapfel M, Jost C, Novak P (2004) Stable cycling of graphite in an ionic liquid based electrolyte. Chem Commun 2004:2098–2099

    Article  Google Scholar 

  11. Galinski M, Lewandowski A, Stepniak I (2006) Ionic liquids as electrolytes. Electrochim Acta 51:5567–5580

    Article  CAS  Google Scholar 

  12. Sato T, Maruo T, Marukane S, Takagi K (2004) Ionic liquids containing carbonate solvent as electrolytes for lithium ion cell. J Power Sour 138:253–261

    Article  CAS  Google Scholar 

  13. Zheng H, Jiang J, Abe T, Ogumi Z (2006) Electrochemical intercalation of lithium into a natural graphite anode in quaternary ammonium-based ionic liquid electrolytes. Carbon 44:203–210

    Article  CAS  Google Scholar 

  14. Jin J, Li HH, Wei JP, Bian XK, Zhou Z, Yan J (2009) Li/LiFePO4 batteries with room temperature ionic liquid as electrolyte. Electrochem Commun 11:1500–1503

    Article  CAS  Google Scholar 

  15. Holzapfel M, Jost C, Prodi-Schwab A, Krumeich F, Wursig A, Buqa H, Novak P (2005) Stabilisation of lithiated graphite in an electrolyte based on ionic liquids: an electrochemical and scanning electron microscopy study. Carbon 43:1488–1498

    Article  CAS  Google Scholar 

  16. Guerfi A, Dontigny M, Charest P, Petitclerc M, Lagace P, Vijh A, Zaghib K (2010) Improved electrolytes for Li-ion batteries: mixtures of ionic liquid and organic electrolyte with enhanced safety and electrochemical performance. J Power Sour 195:845–852

    Article  CAS  Google Scholar 

  17. Byrne N, Howlett PC, MacFarlane DR, Forsyth M (2005) The Zwitterion effect in ionic liquids: towards practical rechargeable lithium-metal batteries. Adv Mater 17:2497–2501

    Article  CAS  Google Scholar 

  18. Lewandowski A, Świderska-Mocek A (2009) Properties of the lithium and graphite–lithium anodes in N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide. J Power Sources 194:502–507

    Article  CAS  Google Scholar 

  19. Abe K, Miyoshi K, Hattori T, Ushigoe Y, Yoshitake H (2008) Functional electrolytes: synergetic effect of electrolyte additives for lithium-ion battery. J Power Sour 184:449–455

    Article  CAS  Google Scholar 

  20. Seki S, Kobayashi Y, Miyashiro H, Ohno Y, Mita Y, Terada N, Charest P, Guerfi A, Zaghib K (2002) Compatibility of N-methyl-N-propylpyrrolidinium cation room-temperature ionic liquid electrolytes and graphite electrodes. J Phys Chem C 112:16708–16713

    Article  Google Scholar 

  21. Aurbach D, Gamolsky K, Markovsky B, Gofer Y, Schmidt M, Heider U (2002) On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries. Electrochim Acta 47:1423–1439

    Article  CAS  Google Scholar 

  22. Fu Y, Chen C, Qiu C, Ma X (2009) Vinyl ethylene carbonate as an additive to ionic liquid electrolyte for lithium ion batteries. J Appl Electrochem 39:2597–2603

    Article  CAS  Google Scholar 

  23. Sun XG, Dai S (2010) Electrochemical investigations of ionic liquids with vinylene carbonate for applications in rechargeable lithium ion batteries. Electrochim Acta 55:4618–4626

    Article  CAS  Google Scholar 

  24. Lewandowski A, Biegun M, Galinski M (2012) Kinetics of Li+ reduction in 1-methyl-3-propylpiperidinium bis(trifluoromethylsulfonyl) imide room temperature ionic liquid. Electrochim Acta 63:204–208

    Article  CAS  Google Scholar 

  25. Appetecchi GB, Scaccia S, Tizzani C, Alessandrini F, Passerini D (2006) Synthesis of hydrophobic ionic liquids for electrochemical applications. J Electrochem Soc 153: A1685–A1691

    Google Scholar 

  26. Pelled E, Golodnitsky D, Ardel G (1997) Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes. J Electrochem Soc 144:L208–L210

    Article  Google Scholar 

  27. Barisci JN, Walace GG, MacFarlane DR, Baughman RH (20004) Investigation of ionic liquids as electrolytes for carbon nanotube electrodes. Electrochem Commun 6:22-27

    Google Scholar 

  28. Xu K, Lam Y, Zhang SS, Jow TR, Curtis TB (2007) Solvation Sheath of Li+ in Nonaqueous Electrolytes and Its Implication of Graphite/Electrolyte Interface Chemistry. J Phys Chem C 111:7411–7421

    Article  CAS  Google Scholar 

  29. Xu K (2007)“Charge-Transfer” Process at Graphite/Electrolyte Interface and the Solvation Sheath Structure of Li+ in Nonaqueous Electrolytes. J Electrochem Soc 154:A162-A167

    Google Scholar 

  30. Yamada Y, Iriyama Y, Abe T, Ogumi Z (2009) Kinetics of lithium ion transfer at the interface between graphite and liquid electrolytes: effects of solvent and surface film. Langmuir 25:12766–12770

    Article  CAS  Google Scholar 

  31. Xu K, von Cresce A, Lee U (2010) Differentiating contributions to “ion transfer” barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface. Langmuir 26:11538–11543

    Article  CAS  Google Scholar 

  32. Churikov AV, Volgin MA, Pridatko KI (2002) On the determination of kinetic characteristics of lithium intercalation into carbon. Electrochim Acta 47:2857–2865

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support of Grant 31-242/12 DS-PB is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Lewandowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewandowski, A., Biegun, M., Galinski, M. et al. Kinetic analysis of Li|Li+ interphase in an ionic liquid electrolyte. J Appl Electrochem 43, 367–374 (2013). https://doi.org/10.1007/s10800-012-0515-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-012-0515-0

Keywords

Navigation