Skip to main content
Log in

Diamond cylindrical anodes for electrochemical treatment of persistent compounds in aqueous solution

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Boron-doped diamond (BDD) films were deposited onto either silicon or niobium cylindrical substrates with areas up to 35 cm2 for electrochemical applications. BDD electrodes were characterised in terms of their material and electrochemical properties by scanning electron microscopy, Raman spectroscopy and linear sweep voltammetry. These characterisation techniques indicated conductive polycrystalline BDD with low quantities of non-diamond carbon impurities. Electrochemical oxidations of pharmaceutical compounds were performed using these cylindrical electrodes and monitored by UV/Vis spectroscopy, chemical oxygen demand and total organic carbon. Mixtures of chlortetracycline, oxytetracycline and diclofenac were electrolyzed on a 9.42 cm2 (∅ = 6 mm, h = 50 mm) cylindrical Si/BDD anode using a current density of 8.2 mA cm−2. Ibuprofen was electrolyzed on an 18.0 cm2 (∅ = 10 mm, h = 60 mm) cylindrical Nb/BDD anode using a current density of 25 mA cm−2. Cylindrical-shape diamond electrodes present several advantages with respect to conventional plate-shape BDD electrodes such as handling, sealing and cell assembly. The obtained results show that BDD cylindrical anodes are promising for electrochemical wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, von Gunten U, Wehrli B Science 313(5790):1072–1077

  2. Zhu X, Ni J, Wei J, Xing X, Li H (2011) J Hazard Mater 189:127

    Article  CAS  Google Scholar 

  3. Khetan SK, Collins TJ (2007) Chem Rev 107:2319

    Article  CAS  Google Scholar 

  4. Stackelberg PE, Gibs J, Furlong ET, Meyer MT, Zaugg SD, Lippincott RL (2007) Sci Total Environ 377:255

    Article  CAS  Google Scholar 

  5. Oller I, Malato S, Sanchez-Perez JA (2011) Sci Total Environ 409:4141

    Article  CAS  Google Scholar 

  6. Pera-Titus M, Garcia-Molina V, Banos MA, Gimenez J, Esplugas S (2004) Appl Catal B-Environ 47:219

    Article  CAS  Google Scholar 

  7. Rodrigo MA, Canizares P, Buitron C, Saez C (2010) Electrochim Acta 55:8160

    Article  CAS  Google Scholar 

  8. Kapalka A, Foti G, Comninellis C (2009) Electrochimica Acta 54: 2018

  9. Martinez-Huitle CA, Brillas E (2009) Appl Catal B-Environ 87:105

    Article  CAS  Google Scholar 

  10. Katsaounis A (2010) J Appl Electrochem 40:885

    Article  CAS  Google Scholar 

  11. Palmas S, Polcaro AM, Vacca A, Mascia M, Ferrara F (2007) J Appl Electrochem 37:1357

    Article  CAS  Google Scholar 

  12. Zheng Y, Su W, Chen S, Wu X, Chen X (2011) Chem Eng J 174:304

    Article  CAS  Google Scholar 

  13. Papastefanakis N, Mantzavinos D, Katsaounis A (2010) J Appl Electrochem 40:729

    Article  CAS  Google Scholar 

  14. Sirés I, Brillas E, Cerisola G, Panizza M (2008) J Electroanal Chem 613:151

    Article  Google Scholar 

  15. Alfaro M, Ferro S, Martinez-Huitle CA, Vong YM (2006) J Brazil Chem Soc 17:227

    Article  CAS  Google Scholar 

  16. Hongna Li, Zhu X, Jinren Ni (2011) Electrochimica Acta 56:9789

  17. Fryda M, Herrmann D, Schafer L, Klages CP, Perret A, Haenni W, Comninellis C, Gandini D (1999) New Diam Front Carbon Technol 9:229

    CAS  Google Scholar 

  18. Teofilo RF, Ceragioli HJ, Peterlevitz AC, Da Silva LM, Damos FS, Ferreira MMC, Baranauskas V, Kubota LT (2007) J Solid State Electrochem 11:1449

    Article  CAS  Google Scholar 

  19. Rodrigo MA, Canizares P, Sanchez-Carretero A, Saez C (2010) Catal Today 151:173

    Article  CAS  Google Scholar 

  20. Trava-Airoldi VJ, Moro JR, Corat EJ, Goulart EC, Silva AP, Leite NF (1998) Surf Coat Tech 108:437

    Article  Google Scholar 

  21. Baranauskas V, Ceragioli HJ, Peterlevitz AC (2002) Thin Solid Films 420:151

    Article  Google Scholar 

  22. Borges C, Pfender E, Heberlein J, Anderson C (1998) Diam Relat Mat 7:1351

    Article  CAS  Google Scholar 

  23. Baranauskas V, Peterlevitz AC, Zanin HG, Teófilo RF, Ceragioli HJ, Kubota LT (2011) World Intellectual Property Organization PCT/BR 2010/000385: 1

  24. Zanin H, Peterlevitz AC, Ceragioli HJ, Teófilo RF, Degasperi FT, Baranauskas V (2012) ECS J Solid State Sci Technol 1:N67

    CAS  Google Scholar 

  25. Li J, Tao T, Li X-b, Zuo J-l, Li T, Lu J, Li S-h, Chen L-z, Xia C-y, Liu Y, Wang Y-l (2009) Desalination 239:139

    Article  CAS  Google Scholar 

  26. Baranauskas V, Ceragioli HJ, Peterlevitz AC (2003) Diam Relat Mat 12:346

    Article  CAS  Google Scholar 

  27. Baranauskas V, Ceragioli HJ, Peterlevitz AC, Durrant SF (2001) Thin Solid Films 398:250

    Article  Google Scholar 

  28. Fryda M, Matthee T (2009) 12/337 770: 1

  29. Granger MC, Witek M, Xu JS, Wang J, Hupert M, Hanks A, Koppang MD, Butler JE, Lucazeau G, Mermoux M, Strojek JW, Swain GM (2000) Anal Chem 72:3793

    Article  CAS  Google Scholar 

  30. Mahe E, Devilliers D, Comninellis C (2005) Electrochim Acta 50:2263

    Article  CAS  Google Scholar 

  31. Chen XM, Chen GH, Gao FR, Yue PL (2003) Environ Sci Technol 37:5021

    Article  CAS  Google Scholar 

  32. Swain G (2004) In: Bard AJ, Rubinstein I (eds) Electroanalytical chemistry: a series of advances, vol 22. Marcel Dekker Inc, New York, p 181

  33. Kapałka A, Fóti G, Comninellis C (2008) Electrochem Commun 10:607

    Article  Google Scholar 

  34. Fischer AE, Show Y, Swain GM (2004) Anal Chem 76:2553

    Article  CAS  Google Scholar 

  35. Chaplin BP, Wyle I, Zeng H, Carlisle JA, Farrell J (2011) J Appl Electrochem 41:1329

    Article  CAS  Google Scholar 

  36. Matamoros V, Jover E, Bayona JM (2010) Anal Chem 82:699

    Article  CAS  Google Scholar 

  37. Boyd GR, Reemtsma H, Grimm DA, Mitra S (2003) Sci Total Environ 311:135

    Article  CAS  Google Scholar 

  38. Barnes KK, Kolpin DW, Furlong ET, Zaugg SD, Meyer MT, Barber LB (2008) Sci Total Environ 402:192

    Article  CAS  Google Scholar 

  39. Zhao J-L, Ying G-G, Wang L, Yang J-F, Yang X-B, Yang L-H, Li X (2009) Sci Total Environ 407:962

    Article  CAS  Google Scholar 

  40. Miao X-S, Bishay F, Chen M, Metcalfe CD (2004) Environ Sci Technol 38:3533

    Article  CAS  Google Scholar 

  41. Koutsouba V, Heberer T, Fuhrmann B, Schmidt-Baumler K, Tsipi D, Hiskia A (2003) Chemosphere 51:69

    Article  CAS  Google Scholar 

  42. Ciriaco L, Anjo C, Pacheco MJ, Lopes A, Correia J (2009) Electrochim Acta 54:1464

    Article  CAS  Google Scholar 

  43. Skoumal M, Rodriguez RM, Cabot PL, Centellas F, Garrido JA, Arias C, Brillas E (2009) Electrochim Acta 54:2077

    Article  CAS  Google Scholar 

  44. Zhao X, Qu J, Liu H, Qiang Z, Liu R, Hu C (2009) Appl Catal B-Environ 91:539

    Article  CAS  Google Scholar 

  45. Brillas E, Garcia-Segura S, Skoumal M, Arias C (2010) Chemosphere 79:605

    Article  CAS  Google Scholar 

  46. Ciriaco L, Santos D, Pacheco MJ, Lopes A (2011) J Appl Electrochem 41:577

    Article  CAS  Google Scholar 

  47. Vedenyapina MD, Strel’tsova ED, Davshan NA, Vedenyapin AA (2011) Russ J Appl Chem 84:204

    Article  CAS  Google Scholar 

  48. Zhang H, Liu F, Wu X, Zhang J, Zhang D (2009) Asia-Pac J Chem Eng 4:568

    Article  CAS  Google Scholar 

  49. Rossi A, Alves VA, Da Silva LA, Oliveira MA, Assis DOS, Santos FA, De Miranda RRS (2009) J Appl Electrochem 39:329

    Article  CAS  Google Scholar 

  50. Zhao X, Hou Y, Liu H, Qiang Z, Qu J (2009) Electrochim Acta 54:4172

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The electron microscopy study was performed with the SEM-FEG (JEOL6330F) microscope of the LME/LNLS–Campinas. We are grateful to the Companhia Brasileira de Metalurgia e Mineração (CBMM) for the donation of the niobium used in this study. We also acknowledge the Brazilian agencies CAPES, FAPESP, FAPEMIG, FUNARBE and CNPq for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinaldo F. Teófilo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zanin, H., Teófilo, R.F., Peterlevitz, A.C. et al. Diamond cylindrical anodes for electrochemical treatment of persistent compounds in aqueous solution. J Appl Electrochem 43, 323–330 (2013). https://doi.org/10.1007/s10800-012-0491-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-012-0491-4

Keywords

Navigation