Skip to main content
Log in

Electrodeposition of bismuth, tellurium, and bismuth telluride thin films from choline chloride–oxalic acid ionic liquid

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This article presents a series of preliminary results regarding the electrodeposition of bismuth, tellurium, and bismuth telluride films at 60 °C from ionic liquids, containing a mixture of choline chloride and oxalic acid (ChCl–OxA). Ten millimolar concentration solutions of BiCl3 and TeO2 were used as precursors in this supporting electrolyte. Cyclic voltammetry and electrochemical impedance spectroscopy techniques were used to demonstrate the deposition processes on Pt and Cu electrodes. Long-time electrolyses (30–120 min) performed at 60 °C with potential control (between −0.22 and −0.37 V vs. Ag reference electrode) have resulted in films deposited on copper substrate. Film surfaces were studied by scanning electron microscopy and analyzed by energy dispersive X-ray spectroscopy. The results of this study show that ChCl–OxA ionic liquid may be considered as a promising substitute of aqueous baths for Bi, Te or Bi2Te3 film plating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Harbough M, Mathers FE (1933) Trans Electrochem Soc 64:293

    Article  Google Scholar 

  2. Jeffrey CA, Harrington DA, Morin S (2002) Surf Sci 512:L367

    Article  CAS  Google Scholar 

  3. Jiang S, Huang Y-H, Luo F, Du N, Yan C-H (2003) Inorg Chem Commun 6:781

    Article  CAS  Google Scholar 

  4. Vereecken PM, Rodbell K, Ji CX, Searson PC (2005) Appl Phys Lett 86:121916

    Article  Google Scholar 

  5. Yang M, Hu Z (2005) J Electroanal Chem 583:46

    Article  CAS  Google Scholar 

  6. Valsiunas I, Miecinskas P, Gudaviciute L, Steponavicius A (2006) Chemija 17(4):35

    CAS  Google Scholar 

  7. Sandnes E, Williams ME, Bertocci U, Vaudin MD, Stafford GR (2007) Electrochim Acta 52:6221

    Article  CAS  Google Scholar 

  8. Hocevar SB, Daniele S, Bragato C, Ogorevic B (2007) Electrochim Acta 53:555

    Article  CAS  Google Scholar 

  9. Holvoet S, Horny P, Turgeon S, Chevallier P, Pireaux J–J, Mantovani D (2010) Electrochim Acta 55:1042

    Article  CAS  Google Scholar 

  10. Zhou L, Dai Y, Zhang H, Jia Y, Zhang J, Li C (2012) Bull Korean Chem Soc 33(5):1541

    Article  CAS  Google Scholar 

  11. Hamm UW, Kramer D, Zhai RS, Kolb DM (1998) Electrochim Acta 43:2969

    Article  CAS  Google Scholar 

  12. Steponavicius A, Gudaviciute L, Karpaviciene V, Kapocius V (2003) Chemija 12(1):42

    Google Scholar 

  13. Hara M, Nagahara Y, Inukai J, Yoshimoto S, Itaya K (2006) Electrochim Acta 51:2327

    Article  CAS  Google Scholar 

  14. Simka W, Puszczyk D, Nawrat G (2009) Electrochim Acta 54:5307

    Article  CAS  Google Scholar 

  15. Petrova TP, Zelenetskaya KV, Rakhmatullina IF, Shapnik MS (2006) Prot Met 42:359

    Article  CAS  Google Scholar 

  16. Perelygin YP, Kireev SY, Kireev AY (2006) Russ J Appl Chem 79(7):1200

    Article  CAS  Google Scholar 

  17. Tsai Y-D, Lien C-H, Hu C-C (2011) Electrochim Acta 56:7615

    Article  CAS  Google Scholar 

  18. Colom F, Alonso L (1965) Electrochim Acta 10(8):835

    Article  CAS  Google Scholar 

  19. Ebe H, Ueda M, Ohtsuka T (2007) Electrochim Acta 53:100

    Article  CAS  Google Scholar 

  20. Ni Y, Zhang Y, Zhang L, Hong J (2011) Cryst Eng Commun 13:794

    Article  CAS  Google Scholar 

  21. Yang M (2011) J Mater Chem 21:3119

    Article  CAS  Google Scholar 

  22. Som T, Simo A, Fenger R, Troppenz GV, Bansen R, Pfander N, Emmerling F, Rappich J, Boeck T, Rademann K (2012) Chem Phys Chem. doi:10.1002/cphc.201101009

    Google Scholar 

  23. Montiel-Santillan T, Solorza-Feria O, Sanchez-Soriano H (2002) Int J Hydr Energy 27:461

    Article  CAS  Google Scholar 

  24. Santos MC, Machado SAS (2005) Electrochim Acta 50(11):2289

    Article  CAS  Google Scholar 

  25. Zhu W, Yang JY, Zhou DX, Bao SQ, Fan XA, Duan XK (2007) Electrochim Acta 52(11):3660

    Article  CAS  Google Scholar 

  26. Ivanova YA, Ivanov DK, Streltsov EA (2007) Electrochim Acta 52(16):5213

    Article  CAS  Google Scholar 

  27. Sadeghi M, Dastan M, Ensaf MR, Tehrani AA, Tenreiro C, Avila M (2008) Appl Radiat Isot 66(10):1281

    Article  CAS  Google Scholar 

  28. She G, Shi W, Zhang X, Wong T, Cai Y, Wang N (2009) Cryst Growth Des 9:663

    Article  CAS  Google Scholar 

  29. Li F-H, Wang W (2010) J Appl Electrochem 40:2005

    Article  CAS  Google Scholar 

  30. Santos MC, Cabral MF, Machado SAS (2011) Electrochim Acta 58:1

    Article  CAS  Google Scholar 

  31. Liftman Y, Albeck M, Goldschmidt JME, Yarnitsky Ch (1984) Electrochim Acta 29:1673

    Article  CAS  Google Scholar 

  32. Chang CH, Rheem Y, Choa Y-H, Shin DH, Park D-Y, Myung NV (2010) Electrochim Acta 55:743

    Article  CAS  Google Scholar 

  33. Xiao F, Hangarter C, Yoo B, Rheem Y, Lee K-H, Myung NV (2008) Electrochim Acta 53:8103

    Article  CAS  Google Scholar 

  34. Boulanger C (2010) J Electron Mater 39:1818

    Article  CAS  Google Scholar 

  35. Zhu W, Yang JY, Gao XH, Bao SQ, Fan XA, Zhang TJ, Cui K (2005) Electrochim Acta 50(20):4041

    Article  CAS  Google Scholar 

  36. Yoo BY, Huang C-K, Lim JR, Herman J, Ryan MA, Fleurial J-P, Myung NV (2005) Electrochim Acta 50:4371

    Article  CAS  Google Scholar 

  37. Wen S, Corderman RR, Seker F, Zhang AP, Denault L, Blohm ML (2006) J Electrochem Soc 153:C595

    Article  CAS  Google Scholar 

  38. Li S, Toprak MS, Soliman HMA, Zhou J, Muhammed M, Platzek D, Muller E (2006) Chem Mater 18:3627

    Article  CAS  Google Scholar 

  39. Richoux V, Diliberto S, Boulanger C, Lecuire JM (2007) Electrochim Acta 52:3053

    Article  CAS  Google Scholar 

  40. Wang W-L, Wan C-C, Wang Y-Y (2007) Electrochim Acta 52:6502

    Article  CAS  Google Scholar 

  41. Zimmer A, Stein N, Johann L, Beck R, Boulanger C (2007) Electrochim Acta 52:4760

    Article  CAS  Google Scholar 

  42. Li S, Soliman HMA, Zhou J, Toprak MS, Muhammed M, Platzek D, Ziolkowski P, Müller E (2008) Chem Mater 20:4403

    Article  CAS  Google Scholar 

  43. Ham S, Jeon S, Lee U, Park M, Paeng KJ, Myung N, Rajeshwar K (2008) Anal Chem 80(17):6724

    Article  CAS  Google Scholar 

  44. Diliberto S, Richoux V, Stein N, Boulanger C (2008) Phys Status Solidi 205:2340

    Article  CAS  Google Scholar 

  45. Glatz W, Durrer L, Schwyter E, Hierold C (2008) Electrochim Acta 54(2):755

    Article  CAS  Google Scholar 

  46. Chen CL, Chen YY, Lin SJ, Ho JC, Lee PC, Chen CD, Harutyunyan SR (2010) J Phys Chem C 114:3385

    Article  CAS  Google Scholar 

  47. Ma Y, Johansson A, Ahlberg E, Palmqvist AEC (2010) Electrochim Acta 55:4610

    Article  CAS  Google Scholar 

  48. Ma Y, Ahlberg E, Sun Y, Iversen BB, Palmqvist AEC (2011) Electrochim Acta 56:4216

    Article  CAS  Google Scholar 

  49. Soliman HMA, Kashyout AHB (2011) Engineering 3:659

    Article  CAS  Google Scholar 

  50. Erdogan IY, Demir U (2011) Electrochim Acta 56(5):2385

    Article  CAS  Google Scholar 

  51. Li W-J (2009) Electrochim Acta 54:7167

    Article  CAS  Google Scholar 

  52. Nguyen HP, Wu M, Su J, Vullers RJM, Vereecken PM, Fransaer J (2012) Electrochim Acta 68:9

    Article  CAS  Google Scholar 

  53. Li W-J, Yu W-L, Yen C-Y (2011) Electrochim Acta 58:510

    Article  CAS  Google Scholar 

  54. Fung YS, Zhang WB (1997) J Appl Electrochem 27(7):857

    Article  CAS  Google Scholar 

  55. Pan G-B, Freyland W (2007) Electrochim Acta 52(25):7254

    Article  CAS  Google Scholar 

  56. Fu Y-C, Su Y-Z, Zhang H-M, Yan J-W, Xie Z-X, Mao B-W (2010) Electrochim Acta 55:8105

    Article  CAS  Google Scholar 

  57. Abbott AP, Ryder KS, Konig U (2008) Trans Inst Met Finish 86:196

    Article  CAS  Google Scholar 

  58. Golgovici F, Cojocaru A, Nedelcu M, Visan T (2009) Chalcog Lett 6(8):323

    CAS  Google Scholar 

  59. Golgovici F, Cojocaru A, Agapescu C, Jin Y, Nedelcu M, Wang W, Visan T (2009) Studia Univ Babes Bolyai Chemia 54(1):175

    Google Scholar 

  60. Golgovici F, Cojocaru A, Nedelcu M, Visan T (2010) J Electron Mater 39(9):2079

    Article  CAS  Google Scholar 

  61. Golgovici F, Cojocaru A, Anicai L, Visan T (2011) Mater Chem Phys 126:700

    Article  CAS  Google Scholar 

  62. Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK (2004) J Am Chem Soc 126:9142

    Article  CAS  Google Scholar 

  63. Chaouni H, Bessieres J, Modaressi A, Heizmann JJ (2000) J Appl Electrochem 30(4):419

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The support of the European Social Fund through POSDRU/88/1.5/S/60203 Project is acknowledged by the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anca Cojocaru.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agapescu, C., Cojocaru, A., Cotarta, A. et al. Electrodeposition of bismuth, tellurium, and bismuth telluride thin films from choline chloride–oxalic acid ionic liquid. J Appl Electrochem 43, 309–321 (2013). https://doi.org/10.1007/s10800-012-0487-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-012-0487-0

Keywords

Navigation