Skip to main content
Log in

The role of TiO2 layers deposited on YSZ on the electrochemical promotion of C2H4 oxidation on Pt

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical promotion of Pt/YSZ and Pt/TiO2/YSZ catalyst-electrodes has been investigated for the model reaction of C2H4 oxidation in an atmospheric pressure single chamber reactor, under oxygen excess between 280 and 375 °C. It has been found that the presence of a dispersed TiO2 thin layer between the catalyst electrode and the solid electrolyte (YSZ), results in a significant increase of the magnitude of the electrochemical promotion of catalysis (EPOC) effect. The rate enhancement ratio upon current application and the faradaic efficiency values, were found to be a factor of 2.5 and 4 respectively, higher than those in absence of TiO2. This significantly enhanced EPOC effect via the addition of TiO2 suggests that the presence of the porous TiO2 layer enhances the transport of promoting O2− species onto the Pt catalyst surface. This enhancement may be partly due to morphological factors, such as increased Pt dispersion and three-phase-boundary length in presence of the TiO2 porous layer, but appears to be mainly caused by the mixed ionic-electronic conductivity of the TiO2 layer which results to enhanced O2− transport to the Pt surface via a self-driven electrochemical promotion O2− transport mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tauster SJ, Fung SC, Garten RL (1978) J Am Chem Soc 100:170

    Article  CAS  Google Scholar 

  2. Resasco DE, Haller GL (1983) J Catal 82:279

    Article  CAS  Google Scholar 

  3. Cairns JA, Baglin JE, Clark GL, Zeigler JF (1983) J Catal 83:301

    Article  CAS  Google Scholar 

  4. Belton DN, Sun YM, White JM (1984) Phys Chem 88:1690

    Article  CAS  Google Scholar 

  5. Ko CS, Gorte RJ (1984) J Catal 90:59

    Article  CAS  Google Scholar 

  6. Tauster SJ (1987) Acc Chem Res 20:389

    Article  CAS  Google Scholar 

  7. Haller JL, Resasco DE (1987) Adv Catal 36:173

    Article  Google Scholar 

  8. Nicole J, Tsiplakides D, Pliangos C, Verykios XE, Comninellis Ch, Vayenas CG (2001) J Catal 204:23

    Article  CAS  Google Scholar 

  9. Pliangos C, Yentekakis IV, Ladas S, Vayenas CG (1996) J Catal 159:189

    Article  CAS  Google Scholar 

  10. Constantinou I, Archonta D, Brosda S, Lepage M, Sakamoto Y, Vayenas CG (2007) J Catal 251:400

    Article  CAS  Google Scholar 

  11. Francioso L, Presicce DS, Taurino AM, Rella R, Siciliano P, Ficarella A (2003) Sens Actuat B 95:66

    Article  Google Scholar 

  12. Sopyan I, Murasawa S, Hashimoto K, Fujishima A (1993) In: Ollis DE, Al Ekabi H (eds) Photocatalytic purification and treatment of water and air. Elsevier, Amsterdam

    Google Scholar 

  13. Ollis DE, Al-Ekabi H (eds) (1993) Proceedings of the 1st International Conference on TiO2 Photocatalytic purification and treatment of water and air. Elsevier, Amsterdam, p 747

  14. Fujishima A, Honda K (1972) Nature 238:37

    Article  CAS  Google Scholar 

  15. Graetzel M (1991) Comments Inorg Chem 12:93

    Article  CAS  Google Scholar 

  16. Watanabe T, Kitamura A, Kojima E, Nakayama C, Hashimoto K, Fujishima A (1994) Chem Lett 23:723

    Google Scholar 

  17. Battiston GA, Gerbasi R, Porchia M, Marigo A (1994) Thin Solid Films 239:186

    Article  CAS  Google Scholar 

  18. Williams LM, Hess DW (1983) J Vac Sci Technol A1:1810

    Google Scholar 

  19. Fujii T, Sakata N, Takada J, Miura Y, Daitoh Y (1994) J Mater Res 9:1468

    Article  CAS  Google Scholar 

  20. Vayenas CG, Bebelis S, Pliangos C, Brosda S, Tsiplakides D (2001) Electrochemical activation of catalysis: promotion electrochemical promotion and metal-support interactions. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  21. Vayenas CG, Koutsodontis C (2008) J Chem Phys 128:182506

    Article  Google Scholar 

  22. Vayenas GG, Bebelis S, Ladas S (1990) Nature 343:625

    Article  CAS  Google Scholar 

  23. Anastasijevic NA, Baltruschat H, Heitbaum (1993) J Electrochim Acta 38:1067

    Article  CAS  Google Scholar 

  24. Cavalca C, Larsen C, Vayenas CG, Haller GJ (1993) Phys Chem 97:6115

    Article  CAS  Google Scholar 

  25. Pachioni G, Illas F, Neophytides S, Vayenas CG (1996) J Phys Chem 100:16553

    Article  Google Scholar 

  26. Neophytides S, Tsiplakides D, Stonehart P, Jaksic M, Vayenas CG (1994) Nature (London) 370:292

    Google Scholar 

  27. Petrushina IM, Bandur VA, Cappeln F, Bjerrum NJ (2000) J Electrochem Soc 147:3010

    Article  CAS  Google Scholar 

  28. Riess I, Vayenas CG (2003) Solid State Ionics 159:313

    Article  CAS  Google Scholar 

  29. Jaccoud A, Falgairette C, Foti G, Comninellis Ch (2007) Electrochim Acta 52:7927

    Article  CAS  Google Scholar 

  30. De Lucas-Consuegra A, Dorado F, Jimenez-Borja C, Valverde JL (2008) J Appl Electrochem 38:1151

    Article  Google Scholar 

  31. Li X, Gaillard F, Vernoux P (2007) Top Catal 44:391

    Article  CAS  Google Scholar 

  32. Leiva EPM, Vázquez C, Rojas MI, Mariscal MM (2008) J Appl Electrochem 38:1065

    Article  CAS  Google Scholar 

  33. Balomenou SP, Tsiplakides D, Katsaounis A, Thiemann-Handler S, Cramer B, Foti G, Comninellis Ch, Vayenas CG (2004) Appl Catal B 52:181

    Article  CAS  Google Scholar 

  34. Baranova EA, Fóti G, Comninellis Ch (2004) Electrochem Commun 6:170

    Article  CAS  Google Scholar 

  35. Baranova EA, Fóti G, Comninellis Ch (2004) Electrochem Commun 6:389

    Article  CAS  Google Scholar 

  36. Wüthrich R, Baranova EA, Bleuler H, Comninellis Ch (2004) Electrochem Commun 6:1199

    Article  Google Scholar 

  37. Baranova EA, Thursfield A, Brosda S, Fóti G, Comninellis Ch, Vayenas CG (2005) J Electrochem Soc 152(2):E40

    Article  CAS  Google Scholar 

  38. Baranova EA, Thursfield A, Brosda S, Foti G, Comninellis Ch, Vayenas CG (2005) Catal Lett 105(1–2):15

    Article  CAS  Google Scholar 

  39. Papaioannou EI, Souentie S, Hammad A, Vayenas CG (2009) Catal Today 146:336

    Article  CAS  Google Scholar 

  40. Lin H, Rumaiz AK, Schulz M, Wang D, Rock R, Huang CP, Shah SI (2008) Mater Sci Eng B 151:133

    Article  CAS  Google Scholar 

  41. Hattori A, Tada H (2001) Sol-Gel Sci Technol 22:47

    Article  CAS  Google Scholar 

  42. Harju M, Areva S, Rosenholm JB, Mäntylä T (2008) Appl Surf Sci 254:5981

    Article  CAS  Google Scholar 

  43. Jensen H, Soloviev A, Li Z, Søgaard EG (2005) Appl Surf Sci 246:239

    Article  CAS  Google Scholar 

  44. Spurr A, Myers H (1957) Anal Chem 59:761

    Google Scholar 

Download references

Acknowledgement

CGV expresses his warm thanks to Professor Christos Comninellis for many helpful discussions and for a fruitful and pleasant collaboration on the EPOC effect during the last 20 years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. G. Vayenas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papaioannou, E.I., Souentie, S., Sapountzi, F.M. et al. The role of TiO2 layers deposited on YSZ on the electrochemical promotion of C2H4 oxidation on Pt. J Appl Electrochem 40, 1859–1865 (2010). https://doi.org/10.1007/s10800-010-0107-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-010-0107-9

Keywords

Navigation