Skip to main content
Log in

DSA electrochemical treatment of olive mill wastewater on Ti/RuO2 anode

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical oxidation of olive mill wastewater (OMW) over a Ti/RuO2 anode was studied by means of cyclic voltammetry and bulk electrolysis and compared with previous results over a Ti/IrO2 anode. Experiments were conducted at 300–1,220 mg L−1 initial chemical oxygen demand (COD) concentrations, 0.05–1.35 V versus SHE and 1.39–1.48 V versus SHE potential windows, 15–50 mA cm−2 current densities, 0–20 mM NaCl, Na2SO4, or FeCl3 concentrations, 80 °C temperature, and acidic conditions. Partial and total oxidation reactions occur with the overall rate being near first-order kinetics with respect to COD. Oxidation at 28 Ah L−1 and 50 mA cm−2 leads to quite high color and phenols removal (86 and 84%, respectively), elimination of ecotoxicity, and a satisfactory COD and total organic carbon reduction (52 and 38%, respectively). Similar performance can be achieved at the same charge (28 Ah L−1) using lower current densities (15 mA cm−2) but in the presence of various salts. For example, COD removal is less than 7% at 28 Ah L−1 in a salt-free sample, while addition of 20 mM NaCl results in 54% COD reduction. Decolorization of OMW using Ti/RuO2 anode seems to be independent of the presence of salts in contrast with Ti/IrO2 where addition of NaCl has a beneficial effect on decolorization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chatzisymeon E, Dimou A, Mantzavinos D, Katsaounis A (2009) J Hazard Mater 167:268

    Article  CAS  Google Scholar 

  2. Mantzavinos D, Kalogerakis N (2005) Environ Int Recent Adv Biorem 31:289

    CAS  Google Scholar 

  3. Trasatti S (2000) Electrochim Acta 45:2377

    Article  CAS  Google Scholar 

  4. Comninellis Ch, Pulgarin C (2001) J Appl Electrochem 21:703

    Article  Google Scholar 

  5. Comninellis Ch, Pulgarin C (1993) J Appl Electrochem 23:108

    Article  CAS  Google Scholar 

  6. Comninellis Ch, Nerini A (1995) J Appl Electrochem 25:23

    Article  CAS  Google Scholar 

  7. Khoufi S, Aouissaoui H, Penninckx M, Sayadi S (2004) Water Sci Technol 49:97

    CAS  Google Scholar 

  8. Longhi P, Vodopivec B, Fiori G (2001) Ann Chim 91:169

    CAS  Google Scholar 

  9. Saracco G, Solarino L, Specchia V, Maja M (2001) Chem Eng Sci 56:1571

    Article  CAS  Google Scholar 

  10. Panizza M, Cerisola G (2006) Water Res 40:1179

    Article  CAS  Google Scholar 

  11. Israilides CJ, Vlyssides AG, Mourafeti VN, Karvouni G (1997) Bioresour Technol 61:163

    Article  CAS  Google Scholar 

  12. Giannis A, Kalaitzakis M, Diamadopoulos E (2007) J Chem Technol Biotechnol 82:663

    Article  CAS  Google Scholar 

  13. Gotsi M, Kalogerakis N, Psillakis E, Samaras P, Mantzavinos D (2005) Water Res 39:4177

    Article  CAS  Google Scholar 

  14. Un UT, Ugur S, Koparal AS, Ogutveren UB (2006) Sep Purif Technol 52:136

    Article  Google Scholar 

  15. Un UT, Altay U, Koparal AS, Ogutveren UB (2008) Chem Eng J 139:445

    Article  CAS  Google Scholar 

  16. Inan H, Dimoglo A, Simsek H, Karpuzcu M (2004) Sep Purif Technol 36:23

    Article  CAS  Google Scholar 

  17. Fóti G, Comninellis Ch (2004) In: White RE, Conway BE, Vayenas CG (eds) Modern aspects of electrochemistry, vol 37. Kluwer Academic/Plenum Publishers, New York, pp 87–130

  18. Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) In: Abelson JN, Simon MI (eds) Oxidants and antioxidants, part A, Methods in enzymology, vol 299. Academic Press, San Diego, CA, pp 152–177

  19. Mantzavinos D, Lauer E, Sahibzada M, Livingston AG, Metcalfe IS (2000) Water Res 3:1620

    Article  Google Scholar 

  20. Galizzioli D, Tantardini F, Trasatti S (1974) J Appl Electrochem 4:57

    Article  CAS  Google Scholar 

  21. Galizzioli D, Tantardini F, Trasatti S (1975) J Appl Electrochem 5:203

    Article  CAS  Google Scholar 

  22. Kapalka A, Fóti G, Comninellis Ch (2008) Electrochem Commun 10:607

    Article  CAS  Google Scholar 

  23. Fierro S, Nagel T, Baltruschat H, Comninellis Ch (2007) Electrochem Commun 9:1969

    Article  CAS  Google Scholar 

  24. Kotta E, Kalogerakis N, Mantzavinos D (2007) J Chem Technol Biotechnol 82:504

    Article  CAS  Google Scholar 

  25. Chatzisymeon E, Xekoukoulotakis NP, Coz A, Kalogerakis N, Mantzavinos D (2006) J Hazard Mater 137:998

    Article  CAS  Google Scholar 

  26. Saracco G, Solarino L, Aigotti R, Specchia V, Maja M (2000) Electrochim Acta 46:373

    Article  CAS  Google Scholar 

  27. Vercesi GP, Rolewicz J, Comninellis C, Hinder J (1991) Thermochim Acta 176:31

    Article  CAS  Google Scholar 

  28. Takasu Y, Yoshinaga N, Sugimoto W (2008) Electrochem Commun 10:668

    Article  CAS  Google Scholar 

  29. Feng YJ, Li XY (2002) Water Res 37:2399

    Article  Google Scholar 

  30. Panić VV, Dekanski AB, Vidaković TR, Mišković-Stanković VB, Javanović BŽ, Nikolić BŽ (2005) J Solid State Electrochem 9:43

    Article  Google Scholar 

  31. Comninellis Ch, Vercesi GP (1991) J Appl Electrochem 21:335

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Katsaounis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papastefanakis, N., Mantzavinos, D. & Katsaounis, A. DSA electrochemical treatment of olive mill wastewater on Ti/RuO2 anode. J Appl Electrochem 40, 729–737 (2010). https://doi.org/10.1007/s10800-009-0050-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-009-0050-9

Keywords

Navigation