Skip to main content
Log in

Electrochemical promotion of the oxidation of propane on Pt/YSZ and Rh/YSZ catalyst-electrodes

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of electrochemical promotion (EP) or non-faradaic electrochemical modification of catalytic activity (NEMCA) was studied in the catalytic reaction of the total oxidation of propane on Pt and Rh films deposited on Y2O3-stabilized-ZrO2 (or YSZ), an O2− conductor, in the temperature range 420–520 °C. In the case of Pt/YSZ and for oxygen to propane ratios lower than the stoichiometric ratio it was found that the rate of propane oxidation could be reversibly enhanced by application of both positive and negative overpotentials (“inverted volcano” behavior), by up to a factor of 1350 and 1130, respectively. The induced rate increase Δr exceeded the corresponding electrochemically controlled rate I/2F of O2− transfer through the solid electrolyte, resulting in absolute values of the apparent faradaic efficiency Λ=Δr/(I/2F) up to 2330. The Rh/YSZ system exhibited similar EP behavior. Abrupt changes in the oxidation state of the rhodium catalyst, accompanied by changes in the catalytic rate, were observed by changing the O2 to propane ratio and catalyst potential. The highest rate increases, by up to a factor of 6, were observed for positive overpotentials with corresponding absolute values of faradaic efficiency Λ up to 830. Rate increases by up to a factor of 1.7 were observed for negative overpotentials. The observed EP behavior is explained by taking into account the mechanism of the reaction and the effect of catalyst potential on the binding strength of chemisorbed reactants and intermediates and on the oxidative state of the catalyst surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Pritchard J., (1990) . Nature 343: 592

    Article  Google Scholar 

  2. Vayenas C.G., Bebelis S., Ladas S., (1990) . Nature 343: 625

    Article  CAS  Google Scholar 

  3. Vayenas C.G., Bebelis S.I., Neophytides S., (1988) . J. Phys. Chem. 92: 5083

    Article  CAS  Google Scholar 

  4. Vayenas C.G., Jaksic M.M., Bebelis S., Neophytides S.G., (1996) The Electrochemical Activation of Catalytic Reactions. In: Bockris J. O’M., Conway B.E., White E. (eds) Modern Aspects of Electrochemistry Vol 29. Plenum, New York, pp. 57-202

    Google Scholar 

  5. Vayenas C.G., Bebelis S., Pliangos C., Brosda S., and Tsiplakides D., (2001) Electrochemical Activation of Catalysis. Kluwer Academic Publishers/Plenum Press, New York

    Google Scholar 

  6. Hubbard C.P., Otto K., Gandhi H.S., and Ng K.Y.S., (1993) . J. Catal. 139: 268

    Article  CAS  Google Scholar 

  7. Hinz A., Skoglundh M., Fridell E., and Andersson A., (2001) . J. Catal. 201: 247

    Article  CAS  Google Scholar 

  8. Aryafar M., and Zaera F., (1997) . Catal. Lett. 48: 173

    Article  CAS  Google Scholar 

  9. Burch R., Halpin E., Hayes M., Ruth K., and Sullivan J.A., (1998) . Appl. Catal. B 19: 199

    Article  CAS  Google Scholar 

  10. Wilson K., Hardacre C., and Lambert R.M., (1995) . J. Phys. Chem. 99: 13755

    Article  CAS  Google Scholar 

  11. Yazawa Y., Takagi N., Yoshida H., Komai S., Satsuma A., Tanaka T., Yoshida S., and Hattori T., (2002) . Appl. Catal. A 223: 103

    Article  CAS  Google Scholar 

  12. Yazawa Y., Yoshida H., and Hattori T., (2002) . Appl. Catal. A 237: 139

    Article  CAS  Google Scholar 

  13. Yazawa Y., Kagi N., Komai S., Satsuma A., Murakami Y., and Hattori T., (2001) . Catal. Lett. 72: 157

    Article  CAS  Google Scholar 

  14. Yazawa Y., Yoshida H., Komai S., and Hattori T., (2002) . Appl. Catal. A 233: 113

    Article  CAS  Google Scholar 

  15. Tsiakaras P., and Vayenas C.G., (1993) . J. Catal. 140: 53

    Article  CAS  Google Scholar 

  16. Frantzis A.D., Bebelis S., and Vayenas C.G., (2000) . Solid State Ionics 136-137: 863

    Article  Google Scholar 

  17. Kaloyannis A., and Vayenas C.G., (1997) . J. Catal. 171: 148

    Article  CAS  Google Scholar 

  18. Vernoux P., Gaillard F., Bultel L., Siebert E., and Primet M., (2002) . J. Catal. 208: 412

    Article  CAS  Google Scholar 

  19. Bebelis S., and Vayenas C.G., (1989) . J. Catal. 118: 125

    Article  CAS  Google Scholar 

  20. Yentekakis I.V., and Bebelis S., (1992) . J. Catal. 137: 278

    Article  CAS  Google Scholar 

  21. Pliangos C., Yentekakis I.V., Verykios X.E., and Vayenas C.G., (1995) . J. Catal. 154: 124

    Article  CAS  Google Scholar 

  22. Vayenas C.G., Brosda S., and Pliangos C., (2001) . J. Catal. 203: 329

    Article  CAS  Google Scholar 

  23. Brosda S., and Vayenas C.G., (2002) . J. Catal. 208: 38

    Article  CAS  Google Scholar 

  24. Fóti G., Bolzonella I., Bachelin D., and Comninellis Ch., (2004) . J. Appl. Electrochem. 34: 9

    Article  Google Scholar 

  25. Riekert L., (1981) . Ber. Bunsenges. Phys. Chem. 85: 297

    CAS  Google Scholar 

  26. Wüthrich R., Baranova E.A., Bleuler H., and Comninellis Ch., (2004) . Elec. Commun. 6: 1199

    Article  CAS  Google Scholar 

  27. Peuckert M., (1985) . J. Phys. Chem. 89: 2481

    Article  CAS  Google Scholar 

  28. Baranova E.A., Fóti G., and Comninellis Ch., (2004) . Elec. Commun. 6: 389

    Article  CAS  Google Scholar 

  29. Kiskinova M.P., (1992) Poisoning and Promotion in Catalysis Based on Surface Science Concept and Experiments. In: Delmon B., and Yates J.T. (eds) Studies in Surface Science and Catalysis Vol 70. Elsevier B.V., Amsterdam

    Google Scholar 

  30. Nicole J., Tsiplakides D., Wodiunig S., and Comninellis Ch., (1997) . J. Electrochem. Soc. 144: L312

    Article  CAS  Google Scholar 

  31. Hlavathy Z., and Tétényi P., (1998) . Surf. Sci. 410: 39

    Article  CAS  Google Scholar 

  32. Bultel L., Roux C., Siebert E., Vernoux P., and Gaillard F., (2004) . Solid State Ionics 166: 183

    Article  CAS  Google Scholar 

  33. Burch R., Crittle D.J., and Hayes M.J., (1999) . Catal. Today 47: 229

    Article  CAS  Google Scholar 

  34. Garetto T.F., Rincón E. and Apesteguía C.R., (2004) . Appl. Catal. B 48: 167

    Article  CAS  Google Scholar 

  35. Kellog G.L., (1986) . Surf. Sci. 171: 359

    Article  Google Scholar 

  36. Oh S.H., Carpenter J.E., (1983) . J. Catal. 80: 472

    Article  CAS  Google Scholar 

  37. Logan A.D., Datye A.K., Houston J.E., (1991) . Surf. Sci. 245: 280

    Article  CAS  Google Scholar 

  38. Peuckert M., Bonzel H.P., (1984) . Surf. Sci. 145: 239

    Article  CAS  Google Scholar 

  39. Yoshida H., , Yazawa Y., Hattori T., (2003) . Catal. Today 87: 19

    Article  CAS  Google Scholar 

  40. Burch R., Watling T.C., (1997) . J. Catal. 169: 45

    Article  CAS  Google Scholar 

  41. Pliangos C., Yentekakis I.V., Ladas S., Vayenas C.G., (1996) J. Catal. 159: 189

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the European Social Fund (ESF), Operational Program for Educational and Vocational Training II (EPEAEK II) and particularly the Program IRAKLEITOS, for financially supporting this work. They also thank Dr V. Drakopoulos, Institute of Chemical Engineering and High Temperature Chemical Processes (ICE-HT/FORTH) for the scanning electron microscopy (SEM) characterization of the catalyst-electrodes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bebelis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotsionopoulos, N., Bebelis, S. Electrochemical promotion of the oxidation of propane on Pt/YSZ and Rh/YSZ catalyst-electrodes. J Appl Electrochem 35, 1253–1264 (2005). https://doi.org/10.1007/s10800-005-9037-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-005-9037-3

Keywords

Navigation