Skip to main content
Log in

A public good model with lotteries in large groups

  • Published:
International Tax and Public Finance Aims and scope Submit manuscript

Abstract

We analyze the effect of a large group on a public goods model with lotteries. We show that as populations get large, and with preferences in which people only care about their private consumptions and the total supply of the public good, the level of contributions converges to the one given by voluntary contributions. With altruistic preferences of the warm-glow type, the contributions converge to a level strictly higher than those given by voluntary contributions, but in general they do not yield first-best levels. Our results are important to clarify why in general governments do not rely on lotteries for a large part of the revenue creation for public good provision. They are also useful to understand why lottery proceeds are earmarked to worthy causes, where warm glow is likely to be larger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. These preferences are called by Andreoni (1990) purely altruistic.

  2. Olszewski and Siegel (2013) provide a general way to find equilibrium outcomes of contests with a large (but finite) number of competitors and prizes. This is done by approximating the equilibrium with a particular incentive-compatible and individually rational mechanisms.

  3. These are called by Andreoni (1990) impurely altruistic preferences.

  4. Similar models of mixture public–private good were first introduced by Cornes and Sandler (1984,1986) and Steinberg (1987).

  5. In the USA, for example, Lotto revenues are earmarked for the provision of education (see Landry and Price 2007).

  6. Bergstrom and Cornes (1983) also provide a recipe for constructing quasi-concave functions of this form, and a diagnostic test to determine whether a given function of this form is quasi-concave.

  7. It seems natural that private good is complementary to the public good. Also, since in a large society, the public good is likely to become large, a separable \((\omega _{i}-x_{i})+H(G)\) term would lead to the utility of private good consumption becoming very small as compared to \(H(G).\)

  8. As in Morgan (2000) and Duffy and Matros (2012), in our setting, the public good is provided only when the wagers are sufficient to cover the cost of the prize; otherwise, the lottery is called off, and the wagers are refunded. It is important that the prize \(R\) is an amount fixed ex-ante. If the prize were a fraction of lottery revenues, the utility of the players would be isomorphic to the one with voluntary contributions and the lottery would not change the outcome of the game.

  9. Similarly as what happens between private and public goods, it seems natural that warm glow is complementary to the public good. And as in the previous case, since in a large society, the public good is likely to become large, a separable \(h_{i}(G)+g(x_{i})\) term would lead to warm-glow utility \(g(x_{i})\) becoming very small as compared to \(h_{i}(G).\)

  10. We are grateful to a referee for this observation.

References

  • Andreoni, J. (1990). Impure altruism and donations to public goods: A theory of warm-glow giving? Economic Journal, 100(4), 464–477.

    Article  Google Scholar 

  • Bergstrom, T., Blume, L., & Varian, H. (1986). On the private provision of public goods. Journal of Public Economics, 29, 25–49.

    Article  Google Scholar 

  • Bergstrom, T., & Cornes, R. (1983). Independence of allocative efficiency from distribution in the theory of public goods. Econometrica, 51(6), 1753–1765.

    Article  Google Scholar 

  • Borg, M. O., & Mason, P. M. (1988). The budgetary incidence of a lottery to support education. National Tax Journal, 61, 75–85.

    Google Scholar 

  • Borg, M. O., Mason, P. M., & Shapiro, S. L. (1991). The economic consequences of state lotteries. New York, NY: Praeger Press.

    Google Scholar 

  • Buchanan, J. (1963). The economics of earmarked taxes. Journal of Political Economy, 71, 457–469.

    Article  Google Scholar 

  • Clotfelter, C. T., & Cook, P. P. (1989). Selling hope, state lotteries in America. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Corazzini, L., Faravelli, M., & Stanca, L. (2010). A prize to give for: An experiment on public good funding mechanism. Economic Journal, 120, 944–967.

    Article  Google Scholar 

  • Cornes, R., & Sandler, T. (1984). Easy riders, joint production and public goods. Economic Journal, 94, 580–598.

    Article  Google Scholar 

  • Cornes, R., & Sandler, T. (1986). The theory of externalities, public goods and club goods (1st ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Duffy, J., & Matros, A. (2012). All-pay actions vs. lotteries as provisional fixed-prize fundraising mechanisms: theory and evidence, discussion paper.

  • Duncan, B. (2002). Pumpkin pies and public goods: The raffle fundraising strategy. Public Choice, 111, 49–71.

    Article  Google Scholar 

  • Giebe, T., & Schweinzer, P. (2014). Consuming your way to efficiency. European Journal of Political Economy, 36, 1–12.

    Article  Google Scholar 

  • Landry, C. E., & Price, M. K. (2007). Earmarking lottery proceeds for public goods: Empirical evidence from US lotto expenditures. Economics Letters, 95(3), 451–455.

    Article  Google Scholar 

  • Morgan, J. (2000). Financing public goods by means of lotteries. The Review of Economic Studies, 67(4), 761–784.

    Article  Google Scholar 

  • Morgan, J., & Sefton, M. (2000). Funding public goods with lotteries: Experimental evidence. The Review of Economic Studies, 67(4), 785–810.

    Article  Google Scholar 

  • Olszewski, W., & Siegel, R. (2013). Large contests. Discussion paper, Mimeo.

  • Orzen, H. (2008). Fundraising through competition: Evidence from the lab, CeDEx discussion paper series 2008–11, Nottingham.

  • Schram, A., & Onderstal, S. (2009). Bidding to give: An experimental comparison of actions for charity. International Economic Review, 50(2), 431–457.

    Article  Google Scholar 

  • Steinberg, R. (1987). Voluntary donations and public expenditures in a federalist system. American Economic Review, 77, 24–36.

    Google Scholar 

  • Temimi, A. (2001). Does altruism mitigate free-riding and welfare loss? Economics Bulletin, 8(5), 1–8.

    Google Scholar 

Download references

Acknowledgments

Cabrales acknowledges the support from the Spanish Ministry of Science and Technology under Grant ECO2012-34581. Lugo acknowledges financial support from the Spanish Ministry of Science and Innovation under Grant ECO2013-42710-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Cabrales.

Appendix

Appendix

Proof of Proposition 1

Proof

This proposition is already shown in Morgan (2000), we merely add it here for completeness.

\(G^{*}\) solves

$$\begin{aligned} \sum _{i=1}^{n}h_{i}^{\prime }(G^{*})=H(G^{*})-H^{\prime }(G^{*}) \left( \sum _{i=1}^{n}\omega _{i}-G^{*}\right) . \end{aligned}$$
(7)

and we also obtain \(G^{V}\) by adding first-order conditions of optimization problems for each agent \(i\),

$$\begin{aligned} \sum _{i=1}^{n}h_{i}^{\prime }(G^{V})=nH(G^{V})-H^{\prime }(G^{V})\left( \sum _{i=1}^{n}\omega _{i}-G^{V}\right) . \end{aligned}$$
(8)

It is then easy to verify that \(G^{V}<G^{*}\). Also \(G^{L}\), solves the sum of first-order conditions.

$$\begin{aligned} \sum _{i=1}^{n}h_{i}^{\prime }(G^{L})=H(G^{L})\left( n-(n-1)\frac{R}{R+G^{L}} \right) -H^{\prime }(G^{L})\left( \sum _{i=1}^{n}\omega _{i}-G^{L}\right) \end{aligned}$$
(9)

Comparing expressions (8) and (9), Morgan (2000) remarks that the two expressions differ by the term associated with the negative externality of the lottery multiplied by \(H(G)\). Thus, \(G^{V}<G^{L}\). Taking the limit of (9) as \(R\rightarrow \infty \), expression (9) becomes identical to (7). \(\square \)

Proof of Proposition 2

Proof

At an interior maximum, the first-order condition of (2) with respect to \(x\),

$$\begin{aligned} -H(G)+(\omega _{i}-x_{i})H^{\prime }(G)+h_{i}^{\prime }(G)(g_{1}f\left( x_{i}\right) +1)+h_{i}(G)g_{1}f^{\prime }\left( x_{i}\right) =0 \end{aligned}$$
(10)

The equilibrium level of public good provided by voluntary contributions with the presence of warm glow giving, solves the sum of first-order conditions,

$$\begin{aligned} \sum _{i=1}^{n}h_{i}^{\prime }(G^{wg})(g_{1}f\left( x_{i}\right) +1)+\sum _{i=1}^{n}h_{i}(G^{wg})g_{1}f^{\prime }\left( x_{i}\right)= & {} nH(G^{wg}) \nonumber \\&-H^{\prime }(G^{wg})\left( \sum _{i=1}^{n}\omega _{i}-G^{wg}\right) \nonumber \end{aligned}$$

Then, we have

$$\begin{aligned} \sum _{i=1}^{n}h_{i}^{\prime }(G^{wg})= & {} nH(G^{wg})-H^{\prime }(G^{wg})\left( \sum _{i=1}^{n}\omega _{i}-G^{wg}\right) \\&-\sum _{i=1}^{n}h_{i}^{\prime }(G^{wg})g_{1}f\left( x_{i}\right) -\sum _{i=1}^{n}h_{i}(G^{wg})g_{1}f^{\prime }\left( x_{i}\right) \nonumber \end{aligned}$$
(11)

Compare expressions (8) and (11) to verify that the result holds. The two expressions differ by the term associated with the effect of the warm glow. \(\square \)

Proof of Proposition 3

Proof

Take the first-order conditions of (4) with respect to \(x_{i}\) to find

$$\begin{aligned}&\left( R\frac{\widehat{x}-x_{i}}{\widehat{x}^{2}}-1\right) H(\widehat{x} -R)+\left( \omega _{i}-x_{i}+R\frac{x_{i}}{\widehat{x}}\right) H^{\prime }( \widehat{x}-R) \nonumber \\&\quad + \, h_{i}^{\prime }(\widehat{x}-R)(g_{1}f\left( x_{i}\right) +1)+h_{i}(\widehat{x }-R)g_{1}f^{\prime }\left( x_{i}\right) =0 \nonumber \end{aligned}$$

The public goods provision \(G^{wgL}\) solves the sum of the first-order conditions,

$$\begin{aligned}&\sum _{i=1}^{n}h_{i}^{\prime }(G^{wgL})(g_{1}f\left( x_{i}\right) +1)+\sum _{i=1}^{n}h_{i}(G^{wgL})g_{1}f^{\prime }\left( x_{i}\right) \\&\quad =H(G^{wgL})\left( n-(n-1)\frac{R}{R+G^{wgL}}\right) \\&\quad \quad - \, H^{\prime }(G^{wgL})\left( \sum _{i=1}^{n}\omega _{i}-G^{wgL}\right) \end{aligned}$$

We have

$$\begin{aligned} \sum _{i=1}^{n}h_{i}^{\prime }(G^{wgL})= & {} H(G^{wgL})\left( n\!-\!(n\!-\!1)\frac{R}{ R\!+\!G^{wgL}}\right) \!-\!H^{\prime }(G^{wgL})\left( \sum _{i=1}^{n}\omega _{i}\!-\!G^{wgL}\right) \nonumber \\&-\sum _{i=1}^{n}h_{i}^{\prime }(G^{wgL})g_{1}f\left( x_{i}\right) -\sum _{i=1}^{n}h_{i}(G^{wgL})g_{1}f^{\prime }\left( x_{i}\right) \end{aligned}$$
(12)

Notice that expressions (11) and (12) differ by the term associated with the negative externality of the lottery multiplied by \(H(G)\). Similarly as to the model without warm glow, the public goods provision under the lottery is greater than under voluntary contributions. That is, \( G^{wg}<G^{wgL}\). \(\square \)

Proof of Proposition 4

Proof

To obtain the optimal level of provision, we use the first-order conditions from the problem

$$\begin{aligned} \sum _{i=1}^{n}U_{i}^{wg}=\sum _{i=1}^{n}(\omega _{i}-x_{i})H(G)+h_{i}(G)\left( g_{1}f\left( x_{i}\right) +g_{0}\right) \end{aligned}$$

which yield

$$\begin{aligned} (\omega _{i}-x_{i})H^{\prime }(G^{wg*})+h_{i}^{\prime }(G^{wg*})\left( g_{1}f\left( x_{i}\right) +g_{0}\right) -H(G^{wg*})+h_{i}(G^{wg*})g_{1}f^{\prime }\left( x_{i}\right) =0 \end{aligned}$$
(13)

which using linearity of \(H\left( .\right) \) and \(h_{i}\left( .\right) \) can be expressed as

$$\begin{aligned} \left( (\omega _{i}-x_{i})H+h_{i}\left( g_{1}f\left( x_{i}\right) +g_{0}\right) -HG^{wg*}+h_{i}G^{wg*}g_{1}f^{\prime }\left( x_{i}\right) \right) =0 \end{aligned}$$

We now take limits for \(n\) large and assuming that \(G^{wg*}\) is of \( O\left( n\right) \) (something we later establish) we have

$$\begin{aligned}&\lim _{n\rightarrow \infty }\left( \frac{1}{n}\left( (\omega _{i}-x_{i})H+h_{i}\left( g_{1}f\left( x_{i}\right) +g_{0}\right) -HG^{wg*}+h_{i}G^{wg*}g_{1}f^{\prime }\left( x_{i}\right) \right) \right) =0\\&\quad \lim _{n\rightarrow \infty }\left( \frac{1}{n}\left( -HG^{wg*}+h_{i}G^{wg*}g_{1}f^{\prime }\left( x_{i}\right) \right) \right) =0 \end{aligned}$$

which means that

$$\begin{aligned} \lim _{n\rightarrow \infty }\left( f^{\prime }\left( x_{i}\right) \right) = \frac{H}{g_{1}h_{i}} \end{aligned}$$

so that

$$\begin{aligned} \lim _{n\rightarrow \infty }\frac{1}{n}G^{wg*}=\lim _{n\rightarrow \infty } \frac{1}{n}\sum _{i=1}^{n}x_{i}=\lim _{n\rightarrow \infty }\frac{1}{n} \sum _{i=1}^{n}f^{\prime -1}\left( \frac{H}{g_{1}h_{i}}\right) \end{aligned}$$
(14)

when \(f\left( x\right) =\ln \left( x\right) \)

$$\begin{aligned} \lim _{n\rightarrow \infty }\frac{1}{n}G^{wg*}=\lim _{n\rightarrow \infty } \frac{1}{n}\sum _{i=1}^{n}x_{i}=\lim _{n\rightarrow \infty }\frac{1}{n} \sum _{i=1}^{n}\left( \frac{g_{1}h_{i}}{H}\right) \end{aligned}$$

when \(f\left( x\right) =\frac{1}{1-\alpha }\left( x\right) ^{1-\alpha }\)

$$\begin{aligned} \lim _{n\rightarrow \infty }\frac{1}{n}G^{wg*}=\lim _{n\rightarrow \infty } \frac{1}{n}\sum _{i=1}^{n}x_{i}=\lim _{n\rightarrow \infty }\frac{1}{n} \sum _{i=1}^{n}\left( \frac{g_{1}h_{i}}{H}\right) ^{\frac{1}{\alpha }} \end{aligned}$$

Note that this also establishes \(G^{wg*}\) is of \(O\left( n\right) \).

The first-order condition of (12) with respect to \(x_{i}\) is,

$$\begin{aligned}&\left( R\frac{\widehat{x}-x_{i}}{\widehat{x}^{2}}-1\right) H(\widehat{x} -R)+\left( \omega _{i}-x_{i}+R\frac{x_{i}}{\widehat{x}}\right) H^{\prime }( \widehat{x}-R)\nonumber \\&\quad + \, h_{i}^{\prime }(\widehat{x}-R)(g_{1}f\left( x_{i}\right) +1)+h_{i}(\widehat{x}-R)g_{1}f^{\prime }\left( x_{i}\right) =0 \end{aligned}$$
(15)

using linearity this is equivalent to

$$\begin{aligned}&\left( R\frac{\widehat{x}-x_{i}}{\widehat{x}^{2}}-1\right) H(\widehat{x} -R)+\left( \omega _{i}-x_{i}+R\frac{x_{i}}{\widehat{x}}\right) H+h_{i}(g_{1}f\left( x_{i}\right) +1)\\&\quad +\, h_{i}(\widehat{x}-R)g_{1}f^{\prime }\left( x_{i}\right) =0 \end{aligned}$$

We now take limits for \(n\) large and assuming that \(G^{wgL }\) is of \( O\left( n\right) \) (something we later establish) we have

$$\begin{aligned}&\lim _{n\rightarrow \infty }\left( \left( R\frac{\widehat{x}-x_{i}}{\widehat{x }^{2}}-1\right) H(\widehat{x}-R)+\left( \omega _{i}-x_{i}+R\frac{x_{i}}{ \widehat{x}}\right) H\right. \\&\quad \left. +\, h_{i}(g_{1}f\left( x_{i}\right) +1)+h_{i}(\widehat{x} -R)g_{1}f^{\prime }\left( x_{i}\right) \right) =0 \\&\quad \lim _{n\rightarrow \infty }\left( \left( \frac{R}{\widehat{x}}-1\right) H( \widehat{x}-R)+h_{i}(\widehat{x}-R)g_{1}f^{\prime }\left( x_{i}\right) \right) =0 \end{aligned}$$

which means that

$$\begin{aligned} \lim _{n\rightarrow \infty }\left( f^{\prime }\left( x_{i}\right) \right) = \frac{H}{g_{1}h_{i}}\left( 1-\lim _{n\rightarrow \infty }\frac{R}{\widehat{x}} \right) \end{aligned}$$

when \(f\left( x\right) =\ln \left( x\right) \)

$$\begin{aligned} \lim _{n\rightarrow \infty }\frac{1}{x_{i}}= & {} \frac{H}{g_{1}h_{i}}\left( 1-\lim _{n\rightarrow \infty }\frac{R}{\widehat{x}}\right) \\ \lim _{n\rightarrow \infty }x_{i}= & {} \frac{g_{1}h_{i}}{H}\left( \lim _{n\rightarrow \infty }\frac{\widehat{x}}{\widehat{x}-R}\right) \\ \lim _{n\rightarrow \infty }\frac{\widehat{x}}{n}= & {} \lim _{n\rightarrow \infty }\frac{\widehat{x}}{\widehat{x}-R}\frac{1}{n}\sum _{i=1}^{n}\frac{ g_{1}h_{i}}{H} \\ \lim _{n\rightarrow \infty }\frac{\widehat{x}-R}{n}= & {} \lim _{n\rightarrow \infty }\frac{1}{n}\sum _{i=1}^{n}\frac{g_{1}h_{i}}{H} \end{aligned}$$

when \(f\left( x\right) =\frac{1}{1-\alpha }\left( x\right) ^{1-\alpha }\)

$$\begin{aligned} \lim _{n\rightarrow \infty }x_{i}^{-\alpha }= & {} \frac{H}{g_{1}h_{i}}\left( 1-\lim _{n\rightarrow \infty }\frac{R}{\widehat{x}}\right) \\ \lim _{n\rightarrow \infty }x_{i}^{\alpha }= & {} \frac{g_{1}h_{i}}{H}\left( \lim _{n\rightarrow \infty }\frac{\widehat{x}}{\widehat{x}-R}\right) \\ \lim _{n\rightarrow \infty }x_{i}= & {} \lim _{n\rightarrow \infty }\left( \frac{ g_{1}h_{i}}{H}\right) ^{\frac{1}{\alpha }}\left( \frac{\widehat{x}}{\widehat{ x}-R}\right) ^{\frac{1}{\alpha }} \\ \lim _{n\rightarrow \infty }\frac{\widehat{x}}{n}= & {} \lim _{n\rightarrow \infty }\left( \frac{\widehat{x}}{\widehat{x}-R}\right) ^{\frac{1}{\alpha }} \frac{1}{n}\sum _{i=1}^{n}\left( \frac{g_{1}h_{i}}{H}\right) ^{\frac{1}{ \alpha }} \\ \lim _{n\rightarrow \infty }\left( \frac{\widehat{x}-R}{n}\right) ^{\frac{1}{ _{\alpha }}}= & {} \lim _{n\rightarrow \infty }\left( \frac{\widehat{x}}{n} \right) ^{\frac{1-\alpha }{\alpha }}\frac{1}{n}\sum _{i=1}^{n}\left( \frac{ g_{1}h_{i}}{H}\right) ^{\frac{1}{\alpha }} \\ \lim _{n\rightarrow \infty }\left( \frac{G^{wgL}}{n}\right) ^{\frac{1}{a}}= & {} \lim _{n\rightarrow \infty }\left( \frac{\widehat{x}}{n}\right) ^{\frac{ 1-\alpha }{\alpha }}\frac{1}{n}\sum _{i=1}^{n}\left( \frac{g_{1}h_{i}}{H} \right) ^{\frac{1}{\alpha }} \\ \lim _{n\rightarrow \infty }\left( \frac{G^{wgL}}{n}\right) ^{\frac{1}{a}}= & {} \lim _{n\rightarrow \infty }\left( \left( \frac{\widehat{x}}{n}\right) ^{ \frac{1-\alpha }{\alpha }}\frac{G^{wg*}}{n}\right) \end{aligned}$$

Assume, by way of a contradiction, that \(G^{wg*}=G^{wgL},\)then

$$\begin{aligned} \lim _{n\rightarrow \infty }\left( \frac{G^{wgL}}{n}\right) ^{\frac{1}{a}}= & {} \lim _{n\rightarrow \infty }\left( \left( \frac{\widehat{x}}{n}\right) ^{ \frac{1-\alpha }{\alpha }}\frac{G^{wgL}}{n}\right) \\ \lim _{n\rightarrow \infty }\left( \frac{G^{wgL}}{n}\right) ^{\frac{1-\alpha }{a}}= & {} \lim _{n\rightarrow \infty }\left( \frac{\widehat{x}}{n}\right) ^{ \frac{1-\alpha }{\alpha }} \\ \lim _{n\rightarrow \infty }\left( \frac{G^{wgL}}{n}\right)= & {} \lim _{n\rightarrow \infty }\left( \frac{\widehat{x}-R}{n}\right) =\lim _{n\rightarrow \infty }\left( \frac{\widehat{x}}{n}\right) \end{aligned}$$

This entails a contradiction, and the result follows. \(\square \)

Proof of Proposition 5

Proof

The first-order condition,

$$\begin{aligned} \left( R\frac{\widehat{x}-x_{i}}{\widehat{x}^{2}}-1\right) H(\widehat{x} -R)+\left( \omega _{i}-x_{i}+R\frac{x_{i}}{\widehat{x}}\right) H^{\prime }( \widehat{x}-R) \\ + \, h_{i}^{\prime }(\widehat{x}-R)(g_{1}f\left( x_{i}\right) +1)+h_{i}(\widehat{x }-R)g_{1}f^{\prime }\left( x_{i}\right) =0 \end{aligned}$$

where \(\widehat{x}=\sum x_{i}\) noting that \(H^{\prime }\) and \(h^{\prime }\) are bounded by concavity and assuming that \(\widehat{x}-R\) is of \(O\left( n\right) \) (something we later establish) as \(n\rightarrow \infty \), we obtain

$$\begin{aligned}&\lim _{n\rightarrow \infty }\left( \frac{1}{n}\left( \left( R\frac{\widehat{ x}-x_{i}}{\widehat{x}^{2}}-1\right) H(\widehat{x}-R)+\left( \omega _{i}-x_{i}+R\frac{x_{i}}{\widehat{x}}\right) H^{\prime }(\widehat{x} -R)\right) \right. \\&\quad +\left. \frac{1}{n}\left( h_{i}^{\prime }(\widehat{x}-R)(g_{1}f\left( x_{i}\right) +1)+h_{i}(\widehat{x}-R)g_{1}f^{\prime }\left( x_{i}\right) \right) \right) \\&\quad =\lim _{n\rightarrow \infty }\frac{1}{n}\left( \frac{R}{\widehat{x}}H( \widehat{x}-R)-H(\widehat{x}-R)+h_{i}(\widehat{x}-R)g_{1}f^{\prime }\left( x_{i}\right) \right) =0 \\&\quad =\lim _{n\rightarrow \infty }\frac{1}{n}\left( \frac{R-\widehat{x}}{ \widehat{x}}H(\widehat{x}-R)+h_{i}(\widehat{x}-R)g_{1}f^{\prime }\left( x_{i}\right) \right) =0 \end{aligned}$$

so that

$$\begin{aligned} \lim _{n\rightarrow \infty }\frac{1}{n}\left( h_{i}(\widehat{x} -R)g_{1}f^{\prime }\left( x_{i}\right) \right)= & {} \lim _{n\rightarrow \infty } \frac{1}{n}\left( \frac{\widehat{x}-R}{\widehat{x}}H(\widehat{x}-R)\right) \\ \lim _{n\rightarrow \infty }\left( f^{\prime }\left( x_{i}\right) \right)= & {} \lim _{n\rightarrow \infty }\left( \frac{\widehat{x}-R}{\widehat{x}}\frac{ H(\widehat{x}-R)}{g_{1}h_{i}(\widehat{x}-R)}\right) \nonumber \\= & {} \lim _{n\rightarrow \infty }\left( \frac{\widehat{x}-R}{\widehat{x}}\frac{1 }{g_{1}k_{i}}\right) \nonumber \\ \lim _{n\rightarrow \infty }\left( x_{i}\right)= & {} \lim _{n\rightarrow \infty }f^{\prime -1}\left( \frac{\widehat{x}-R}{\widehat{x}}\frac{1}{g_{1}k_{i}} \right) \nonumber \end{aligned}$$
(16)

so that we have the desired result

$$\begin{aligned} \lim _{n\rightarrow \infty }\frac{\widehat{x}}{n}=\lim _{n\rightarrow \infty } \frac{1}{n}\sum _{i=1}^{n}f^{\prime -1}\left( \frac{\widehat{x}-R}{\widehat{x} }\frac{1}{g_{1}k_{i}}\right) \end{aligned}$$

Note also that from Eq. (16) if \(g_{1}=0,\) it must be the case that \(\lim _{n\rightarrow \infty }\left( \widehat{x}\!-\!R\right) /\widehat{x}\!=\!0\) so that \(\lim _{n\rightarrow \infty }\widehat{x}/n=\rho \). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabrales, A., Lugo, H. A public good model with lotteries in large groups. Int Tax Public Finance 23, 218–233 (2016). https://doi.org/10.1007/s10797-015-9359-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10797-015-9359-y

Keywords

JEL Classification

Navigation