Skip to main content
Log in

A fast and scalable approach for IoT service selection based on a physical service model

  • Published:
Information Systems Frontiers Aims and scope Submit manuscript

Abstract

Information Systems (ISs) have become one of the crucial tools for various organizations in managing and coordinating business processes. Now we are entering the era of the Internet of Things (IoT). IoT is a paradigm in which real-world physical things can be connected to the Internet and provide services through the computing devices attached. The IoT infrastructure is starting to be integrated with ISs thereby diminishing the boundaries between the physical world and the business IT systems. With the development of IoT technologies, the number of connected things and their available physical services are increasing rapidly. Thus, selecting an appropriate service that satisfies a user’s requirements from such services becomes a time-consuming challenge. To address this issue, we propose a Physical Service Model (PSM) as a common conceptual model to describe heterogeneous IoT physical services. PSM contains three core concepts (device, resource, and service) and specifies their relationships. Based on the proposed PSM, we define three types of Quality of Service (QoS) attributes and rate candidate services according to user requirements. To dynamically rate QoS values and select an appropriate physical service, we propose a Physical Service Selection (PSS) method that takes a user preference and an absolute dominance relationship among physical services into account. Finally, experiments are conducted to evaluate the performance of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. https://evrythng.com

  2. https://xively.com

  3. https://www.carriots.com

  4. https://www.compose.io

  5. http://share.cisco.com/internet-of-things.html

  6. http://xmlns.com/foaf/spec/

  7. www.geonames.org/ontology/

  8. http://www.geonames.org/ontology/documentation.html

  9. http://hurricane.ncdc.noaa.gov/cgi-bin/climatenormals/climatenormals.pl

References

  • Agarwal, V., & Jalote, P. (2010). From specification to adaptation: An integrated QoS-driven approach for dynamic adaptation of web service compositions. In Proc. of IEEE Int’l Conf. Web Services (ICWS), 275–282.

  • Alrifai, M., Skoutas, D., & Risse, T. (2010). Selecting skyline services for QoS-based web service composition. In Proc. of Int’l World Wide Web Conf., 11–20.

  • Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: a survey. Computer Networks, 54(15), 2787–2805.

    Article  Google Scholar 

  • Bandyopadhyay, D., & Sen, J. (2011). Internet of things: applications and challenges in technology and standardization. Wireless Personal Communications, 58(1), 49–69.

    Article  Google Scholar 

  • Bi, Z., Xu, L., & Wang, C. (2014). Internet of things for enterprise systems of modern manufacturing. IEEE Transactions on Industrial Informatics, 10(2), 1537–1546.

    Article  Google Scholar 

  • Broll, G., Paolucci, M., Wagner, M., Rukzio, E., Schmidt, A., & Hussmann, H. (2009). Perci: pervasive service interaction with the Internet of Things. IEEE Internet Computing, 13(6), 74–81.

    Article  Google Scholar 

  • Cai, H., Xu, L., Xu, B., Xie, C., Qin, S., & Jiang, L. (2014). IoT-based configurable information service platform for product lifecycle management. IEEE Transactions on Industrial Informatics, 10(2), 1558–1567.

    Article  Google Scholar 

  • Chan, C. Y., Jagadish, H. V., Tan, K. L., Tung, A. K., & Zhang, Z. (2006). Finding k-dominant skylines in high dimensional space. In Proc. of ACM Int’l Conf. Management of Data (SIGMOD), 503–514.

  • Chun, S., Jung, J., Jin, X., Cho, G., & Lee, K.-H. (2014a). Semantically enriched object identification for Internet of Things. In Proc. of IEEE Int’l Conf. Distributed Computing in Sensor Systems (DCOSS), 141–142.

  • Chun, S., Jung, J., Jin, X., Cho, G., Shin, J., & Lee, K.-H. (2014b). Short paper: Semantic URI-based event-driven physical mashup. In Proc. of IEEE World Forum on Internet of Things (WF-IoT), 195–196.

  • Compton, M., Barnaghi, P., Bermudez, L., García-Castro, R., Corcho, O., Cox, S., Graybeal, J., Hauswirth, M., Henson, C., Herzog, A., Huang, V., Janowicz, K., Kelsey, W., Phuoc, D., Lefort, L., Leggieri, M., Neuhaus, H., Nikolov, A., Page, K., Passant, A., Sheth, A., & Taylor, K. (2012). The SSN ontology of the W3C semantic sensor network incubator group. Journal of Web Semantics, 17, 25–32.

    Article  Google Scholar 

  • De, S., Barnaghi, P., Bauer, M., & Meissner, S. (2011). Service modelling for the Internet of Things. In Proc. of Federated Conf. Computer Science and Information Systems (FedCSIS), 949–955.

  • Dong, Z., Yian, Z., Wangbao, L., Jianhua, G., & Yunlan, W. (2010). Object service provision in Internet of Things. In Proc. of the Int’l Conf. on e-Education, e-Business, e-Management, and e-Learning (IC4E), 234–237.

  • Duan, L., & Xu, L. (2012). Business intelligence for enterprise systems: a survey. IEEE Transactions on Industrial Informatics, 8(3), 679–687.

    Article  Google Scholar 

  • Fang, S., Xu, L., Zhu, Y., Ahati, J., Pei, H., Yan, J., & Liu, Z. (2014). An integrated system for regional environmental monitoring and management based on internet of things. IEEE Transactions on Industrial Informatics, 10(2), 1596–1605.

    Article  Google Scholar 

  • Fang, S., Xu, L., Zhu, Y., Liu, Y., Liu, Z., Pei, H., Yan, J., & Zhang, H. (2015). An integrated information system for snowmelt flood early-warning based on internet of things. Information Systems Frontiers, 17(2), 321–335.

    Article  Google Scholar 

  • Fielding, R. T., & Taylor, R. N. (2002). Principled design of the modern Web architecture. ACM Transactions on Internet Technology, 2(2), 115–150.

    Article  Google Scholar 

  • Funk, M., Shirazi, A. S., Mayer, S., Lischke, L., & Schmidt, A. (2015). Pick from here!: An interactive mobile cart using in-situ projection for order picking. In Proc. of the ACM Int’l Joint Conference on Pervasive and Ubiquitous Computing (UbiComp), 601–609.

  • Gao, X., Xu, L., Wang, X., Li, Y., Yang, M., & Liu, Y. (2013). Workflow process modelling and resource allocation based on polychromatic sets theory. Enterprise Information Systems, 7(2), 198–226.

    Article  Google Scholar 

  • Garrido, P. C., Miraz, G. M., Ruiz, I. L., & Gómez-Nieto, M. A. (2010). A model for the development of NFC context-awareness applications on Internet of Things. In Proc. of the Int’l Workshop on Near Field Communication (NFC), 9–14.

  • Girau, R., Nitti, M., & Atzori, L. (2013). Implementation of an experimental platform for the social internet of things. In Proc. of Int’l Conf. on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), 500–505.

  • Gnimpieba, Z. D. R., Nait-Sidi-Moh, A., Durand, D., & Fortin, J. (2015). Using Internet of Things technologies for a collaborative supply chain: application to tracking of pallets and containers. Procedia Computer Science, 56, 550–557.

    Article  Google Scholar 

  • Haller, S., Serbanati, A., Bauer, M., & Carrez, F. (2013). A domain model for the Internet of Things. In Proc. of IEEE Int’l Conf. on Internet of Things (iThings), 411–417.

  • Han, H., Kim, Y., Shin, D., & Lee, K.-H. (2012). Semantic web services discovery based on I/O message relations. International Journal of Web and Grid Services, 8(4), 335–360.

    Article  Google Scholar 

  • Hur, K., Jin, X., & Lee, K.-H. (2015). Automated deployment of IoT services based on semantic description. In Proc. of IEEE World Forum on Internet of Things (WF-IoT), 40–45.

  • IERC (2013). Coordinating and building a broadly based consensus on the ways to realize the internet of things in Europe; available from http://www.internet-of-things-research.eu/pdf/Poster_IERC_A0_V01.pdf.

  • Jang, J., Shin, D., & Lee, K.-H. (2006). Fast quality driven selection of composite web services. In Proc. of European Conf. on Web Services (ECOWS), 87–98.

  • Jin, X., Chun, S., Jung, J., & Lee, K.-H. (2014). IoT service selection based on physical service model and absolute dominance relationship. In Proc. of Int’l Conf. on Service-Oriented Computing and Applications (SOCA), 65–72.

  • Jin, X., Hur, K., Chun, S., Kim, M., & Lee, K.-H. (2015). Automated Mashup of CoAP services on the Internet of Things. In Proc. of IEEE World Forum on Internet of Things (WF-IoT), 262–267.

  • Jung, J., Chun, S., & Lee, K.-H. (2015). Hypergraph-based overlay network model for the Internet of Things. In Proc. of IEEE World Forum on Internet of Things (WF-IoT), 104–109.

  • Kirtsis, D. (2011). Closed-loop PLM for intelligent products in the era of the internet of things. Computer-Aided Design, 43(5), 479–501.

    Article  Google Scholar 

  • Lane, N. D., Georgiev, P., & Qendro, L. (2015). DeepEar: Robust smartphone audio sensing in unconstrained acoustic environments using deep learning. In Proc. of the ACM Int’l Joint Conference on Pervasive and Ubiquitous Computing (UbiComp), 283–294.

  • Li, S., Xu, L., & Zhao, S. (2015a). The internet of things: a survey. Information Systems Frontiers, 17(2), 243–259.

    Article  Google Scholar 

  • Li, X., Shen, J., Ma, W., & Zhang, W. (2015b). The effect of business ties and government ties on new IT venture growth: an empirical examination in China. Information Technology and Management, 1–17.

  • Moghaddam, M., & Davis, J. G. (2014). Service selection in web service composition: a comparative review of existing approaches. Web Services Foundations, 321–346.

  • Monakova, G., & Leymann, F. (2013). Workflow ART: a framework for multidimensional workflow analysis. Enterprise Information Systems, 7(1), 133–166.

    Article  Google Scholar 

  • Nakamura, S., Shigaki, S., Hiromori, A., Yamaguchi, H., & Higashino, T. (2015). A model-based approach to support smart and social home living. In Proc. of the ACM Int’l Joint Conference on Pervasive and Ubiquitous Computing (UbiComp), 1101–1105.

  • Pang, Z., Chen, Q., Han, W., & Zheng, L. (2015). Value-centric design of the internet-of-things solution for food supply chain: value creation, sensor portfolio and information fusion. Information Systems Frontiers, 17(2), 289–319.

    Article  Google Scholar 

  • Pencheva, E., & Atanasov, I. (2014). Engineering of web services for internet of things applications. Information Systems Frontiers, 1–16.

  • Qiu, X., Luo, H., Xu, G., Zhong, R., & Huang, G. Q. (2015). Physical assets and service sharing for IoT-enabled Supply Hub in Industrial Park (SHIP). International Journal of Production Economics, 159, 4–15.

    Article  Google Scholar 

  • Rabbi, M., Aung, M. H., Zhang, M., & Choudhury, T. (2015). MyBehavior: automatic personalized health feedback from user behaviors and preferences using smartphones. In Proc. of the ACM Int’l Joint Conference on Pervasive and Ubiquitous Computing (UbiComp), 707–718.

  • Rahman, T., Adams, A. T., Ravichandran, R. V., Zhang, M., Patel, S. N., Kientz, J. A., & Choudhury, T. (2015). Dopplesleep: A contactless unobtrusive sleep sensing system using short-range doppler radar. In Proc. of the ACM Int’l Joint Conference on Pervasive and Ubiquitous Computing (UbiComp), 39–50.

  • Sun, X., Lu, Z., Hu, W., & Cao, G. (2015). SymDetector: detecting sound-related respiratory symptoms using smartphones. In Proc. of the ACM Int’l Joint Conference on Pervasive and Ubiquitous Computing (UbiComp), 97–108.

  • Tan, W., Chen, S., Li, J., Li, L., Wang, T., & Hu, X. (2014). A trust evaluation model for E‐learning systems. Systems Research and Behavioral Science, 31(3), 353–365.

    Article  Google Scholar 

  • Tao, F., Wang, Y., Zuo, Y., Yang, H., & Zhang, M. (2016). Internet of Things in product life-cycle energy management. Journal of Industrial Information Integration. doi:10.1016/j.jii.2016.03.001.

    Google Scholar 

  • W3C Member Submission (2004). OWL-S: Semantic Markup for Web Services. http://www.w3.org/Submission/OWL-S.

  • W3C Recommendation (2007). SOAP Version 1.2 Part 1: Messaging Framework (Second Edition). https://www.w3.org/TR/soap12-part1/.

  • Whitmore, A., Agarwal, A., & Xu, L. (2014). The Internet of things-a survey of topics and trends. Information Systems Frontiers, 1–14.

  • Wu, Q., Iyengar, A., Subramanian, R., Rouvellou, I., Silva-Lepe, I., & Mikalsen, T. (2009). Combining quality of service and social information for rating services. In Proc. of Int’l Conf. Service-Oriented Computing (ICSOC), 561–575.

  • Xu, L. (2011). Information architecture for supply chain quality management. International Journal of Production Research, 49(1), 183–198.

    Article  Google Scholar 

  • Xu, E., Wermus, M., & Bauman, D. B. (2011). Development of an integrated medical supply information system. Enterprise Information Systems, 5(3), 385–399.

    Article  Google Scholar 

  • Xu, L., Wang, C., Bi, Z., & Yu, J. (2012). AutoAssem: an automated assembly planning system for complex products. IEEE Transactions on Industrial Informatics, 8(3), 669–678.

    Article  Google Scholar 

  • Xu, B., Xu, L., Cai, H., Xie, C., Hu, J., & Bu, F. (2014). Ubiquitous data accessing method in IoT-based information system for emergency medical services. IEEE Transactions on Industrial Informatics, 10(2), 1578–1586.

    Article  Google Scholar 

  • Yan, H., Xu, L. D., Bi, Z., Pang, Z., Zhang, J., & Chen, Y. (2015). An emerging technology–wearable wireless sensor networks with applications in human health condition monitoring. Journal of Management Analytics, 2(2), 121–137.

    Article  Google Scholar 

  • Yin, Y. H. (2016). The internet of things in healthcare: an overview. Journal of Industrial Information Integration. doi:10.1016/j.jii.2016.03.004.

    Google Scholar 

  • Yin, Y. H., Xie, J. Y., Xu, L., & Chen, H. (2012). Imaginal thinking-based human-machine design methodology for the configuration of reconfigurable machine tools. IEEE Transactions on Industrial Informatics, 8(3), 659–668.

    Article  Google Scholar 

  • Yu, Q., & Bouguettaya, A. (2013). Efficient service skyline computation for composite service selection. IEEE Transactions on Knowledge and Data Engineering, 25(4), 776–789.

    Article  Google Scholar 

  • Zhang, S., Dou, W., & Chen, J. (2013). Selecting Top-k composite web services using preference-aware dominance relationship. In Proc. of IEEE Int’l Conf. Web Services (ICWS), 75–82.

Download references

Acknowledgments

This work was supported by the ICT R&D program of MSIP/IITP, Republic of Korea [B0101-16-1276, Access Network Control Techniques for Various IoT Services].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyong-Ho Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, X., Chun, S., Jung, J. et al. A fast and scalable approach for IoT service selection based on a physical service model. Inf Syst Front 19, 1357–1372 (2017). https://doi.org/10.1007/s10796-016-9650-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10796-016-9650-1

Keywords

Navigation