Skip to main content

Advertisement

Log in

Vitreous humor thermodynamics during phacoemulsification

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

The purpose of this study is to determine baseline vitreous humor temperature during a combined phacoemulsification and pars plana vitrectomy (PPV) procedure; to determine what is the temperature variation during phacoemulsification; and to compare vitreous temperature to sublingual temperature. The methods used are prospective, interventional and comparative study. Patients with a diagnosis of cataract and vitreous hemorrhage, programed for a combined procedure of phacoemulsification and PPV, were included. Patients were excluded if posterior capsular rupture existed during the anterior segment procedure. A thermoprobe was inserted through a PPV trocar. Measurement of the vitreous temperature was obtained at baseline and throughout phacoemulsification, at the end of every surgical step, and every 5 min. Sublingual temperature was measured with the same probe at the end of the surgery. Room temperature was registered. Seventeen eyes of 17 patients were included. Mean sublingual temperature was 36.5 °C (standard deviation [σ] 0.26 °C). Mean total vitreous temperature was 31.47 °C (σ 2.1 °C). Mean baseline vitreous temperature was 33.04 °C (σ 0.99 °C). Comparison of sublingual temperature with baseline vitreous temperature resulted in a significant difference (t test P < 0.000. 95 % confidence interval 2.93–3.98). Temperature measured by surgical step and surgical time presented a significant decrease in temperature from baseline (Kruskal–Wallis P < 0.000, P = 0.003, respectively). Vitreous humor is significantly hypothermic when compared to sublingual temperature. Vitreous temperature decreases significantly during phacoemulsification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Simon E, Pierau FK, Taylor DC (1986) Central and peripheral thermal control of effectors in homeothermic temperature regulation. Physiol Rev 66:235–300

    CAS  PubMed  Google Scholar 

  2. Zarrindast MR, Oveissi Y (1988) GABAA and GABAB receptor sites involvement in rat thermoregulation. Gen Pharmacol 19:223–226

    Article  CAS  PubMed  Google Scholar 

  3. Briese E (1998) Normal body temperature in rats: the set point controversy. Neurosci Biobehav Rev 22:427–436

    Article  CAS  PubMed  Google Scholar 

  4. Salmi P, Ahlenius S (1998) Evidence for functional interactions between 5-HT1A and 5-HT2A receptors in rat thermoregulatory mechanisms. Pharmacol Toxicol 82:122–127

    Article  CAS  PubMed  Google Scholar 

  5. Perachon S, Betancourt C, Pilon C et al (2000) Role of dopamine D3 receptors in thermoregulation: a reappraisal. NeuroReport 11:221–225

    Article  CAS  PubMed  Google Scholar 

  6. Valeri CR, MacGregor H, Cassidy G et al (1995) Effects of temperature on bleeding time and clotting time in normal male and female volunteers. Crit Care Med 23:698–704

    Article  CAS  PubMed  Google Scholar 

  7. Howes D, Ohley W, Dorian P et al (2010) Rapid induction of therapeutic hypothermia using convective-immersion surface cooling: safety, efficacy and outcomes. Resuscitation 81:388–392

    Article  PubMed Central  PubMed  Google Scholar 

  8. Polderman KH (2009) Mechanisms of action, physiological effects and complications of hypothermia. Crit Care Med 37:S186–S202

    Article  PubMed  Google Scholar 

  9. Ning XH, Xu CS, Song YC et al (1998) Hypothermia preserves function and signaling for mitochondrial biogenesis during subsequent ischemia. Am J Physiol 274:786–793

    Google Scholar 

  10. Nishio S, Yunoki M, Chen ZF et al (2000) Ischemic tolerance in the rat neocortex following hypothermic preconditioning. J Neurosurg 93:845–851

    Article  CAS  PubMed  Google Scholar 

  11. Yunoki M, Nishio S, Ukita N et al (2002) Characteristics of hypothermic preconditioning influencing the induction of delayed ischemic tolerance. J Neurosurg 97:650–657

    Article  PubMed  Google Scholar 

  12. Vojnikovic B, Tamajo E (2013) Gullstrand’s optical schematic system of the eye—modified by Vojnikovic and Tamajo. Coll Antropol 37:41–45

    PubMed  Google Scholar 

  13. Chen K, Weiland JD (2013) Relationship between vitreous temperature and posterior vitreous detachment. J Mech Behav Biomed Mater 26:54–58

    Article  PubMed  Google Scholar 

  14. Cattini S, Staurenghi G, Gatti A, Rovati L (2013) In vivo diffuse correlation spectroscopy investigation of the ocular fundus. J Biomed Opt 18:57001

    Article  PubMed  Google Scholar 

  15. Rosenbluth RF, Fatt I (1977) Temperature measurements in the eye. Exp Eye Res 25:325–341

    Article  CAS  PubMed  Google Scholar 

  16. Schwartz B (1965) Environmental temperature and the ocular temperature gradient. Arch Ophthalmol 74:237–243

    Article  CAS  PubMed  Google Scholar 

  17. Kunter FC, Seker SS (2011) 3D web-splines solution to human eye heat distribution using bioheat equation. Eng Anal Bound Elem 35:639–643

    Article  Google Scholar 

  18. Muir ER, Zhang Y, San Emeterio Nateras O, Peng Q, Duong TQ (2013) Human vitreous: MR imaging of oxygen partial pressure. RY 266:905–911

    Article  Google Scholar 

  19. Romano MR, Vallejo-Garcia JL, Romano V, Angi M, Vinciguerra P, Costagliola C (2013) Thermodynamics of Vitreoretinal Surgery. Curr Eye Res 38:371–374

    Article  PubMed  Google Scholar 

  20. Landers MB 3rd, Watson JS, Ulrich JN, Quiroz-Mercado H (2012) Determination of retinal and vitreous temperature in vitrectomy. Retina 32:172–176

    Article  PubMed  Google Scholar 

  21. Joussen AM, Barth U, Cubuk H, Koch HR (2000) Effect of irrigating solution and irrigation temperature on the cornea and pupil during phacoemulsification. J Cataract Refract Surg 26:392–397

    Article  CAS  PubMed  Google Scholar 

  22. Shui YB, Holekamp N, Kramer B et al (2009) The gel state of the vitreous and ascorbate-dependent oxygen consumption. Relationship to the etiology of nuclear cataracts. Arch Ophthalmol 127:475–482

    Article  PubMed Central  PubMed  Google Scholar 

  23. Quiñones-Hinojosa A, Malek JY, Ames A 3rd, Ogivly CS, Maynard KI (2003) Metabolic effects of hypothermia and its neuroprotective effects on the recovery of metabolic and electrophysiological function in the ischemic retina in vitro. Neurosurgery 52:1178–1187

    Article  PubMed  Google Scholar 

  24. Horiguchi M, Miyake Y (1991) Effect of temperature on electroretinogram readings during closed vitrectomy in humans. Arch Ophthalmol 109:1127–1129

    Article  CAS  PubMed  Google Scholar 

  25. Tamai K, Toumoto E, Majima A (1997) Protective effects of local hypothermia in vitrectomy under fluctuating intraocular pressure. Exp Eye Res 65:733–738

    Article  CAS  PubMed  Google Scholar 

  26. Tamai K, Majima A, Yan C (1995) Effects of local hypothermia on uveal blood flow and postoperative inflammation in vitrectomy. Jpn J Ophthalmol 39:43–48

    CAS  PubMed  Google Scholar 

  27. Tamai K, Toumoto E, Majima A (1997) Local hypothermia protects the retina from ischaemic injury in vitrectomy. Br J Ophthalmol 81:789–794

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Faberowski N, Stefansson E, Davidson RC (1989) Local hypothermia protects the retina from ischemia. A quantitative study in the rat. Invest Ophthal Vis Sci 30:2309–2313

    CAS  PubMed  Google Scholar 

  29. Adachi K, Fujita Y, Morizane C et al (1998) Inhibition of NMDA receptors and nitric oxide synthase reduces ischemic injury of the retina. Eu J Pharmacol 350:53–57

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Salcedo-Villanueva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salcedo-Villanueva, G., Kon-Jara, V., Harasawa, M. et al. Vitreous humor thermodynamics during phacoemulsification. Int Ophthalmol 35, 557–564 (2015). https://doi.org/10.1007/s10792-014-9983-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-014-9983-z

Keywords

Navigation