Skip to main content

Advertisement

Log in

Induction in gastric mucosal prostaglandin and nitric oxide by Helicobacter pylori is dependent on MAPK/ERK-mediated activation of IKK-β and cPLA2: modulatory effect of ghrelin

  • Research Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Among the key factors defining the extent of gastric mucosal inflammatory involvement in response to Helicobacter pylori is the excessive generation of prostaglandin (PGE2) and nitric oxide (NO), caused by the overexpression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), and triggered by the activation of mitogen-activated protein kinase (MAPK)/c-Jun N-terminal kinase, p38 and ERK, and nuclear translocation of the cognate transcription factors. In this study, we report on the role of MAPK/ERK in the regulation of H. pylori LPS-induced gastric mucosal expression of COX-2 and iNOS. We show that ERK activation by the LPS leads to phosphorylation of the inhibitory κB kinase-β (IKK-β) and cytosolic phospholipase A2 (cPLA2), and is reflected in the upsurge in NF-κB nuclear translocation, induction in COX-2 and iNOS expression, and up-regulation in cPLA2 activity. The modulatory effect of peptide hormone, ghrelin, on the LPS-induced changes, although associated with further enhancement in ERK, IKK-β, and cPLA2 phosphorylation, was reflected in the suppression of IKK-β and cPLA2 activity through S-nitrosylation. While the effect of ghrelin on S-nitrosylation was susceptible to suppression by the inhibitors of Src/Akt pathway, the inhibition of ERK activation caused the blockage in IKK-β and cPLA2 phosphorylation as well as S-nitrosylation. Taken together, our data show that H. pylori-induced ERK activation plays a critical role in up-regulation of gastric mucosal PGE2 and NO generation at the level of IKK-β and cPLA2 activation, and that ghrelin counters these proinflammatory consequences of the LPS through Src/Akt-dependent S-nitrosylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Akira S, Takeda K (2004) Toll-like receptor signaling. Nat Rev Immunol 4:499–511

    Article  PubMed  CAS  Google Scholar 

  • Backert S, Neumann M (2010) What a disorder: proinflammatory signaling pathways induced by Helicobacter pylori. Trends Microbiol 18:479–486

    Article  PubMed  CAS  Google Scholar 

  • Bauer B, Meyer TF (2011) The human gastric pathogen Helicobacter pylori and its association with gastric cancer and ulcer disease. Ulcers 2011:Article ID 340157. doi:10.1155/2011/340157

  • Caivano M, Gorgoni B, Cohen P, Poli V (2001) The induction of cyclooxygenase-2 mRNA in macrophages is biphasic and requires both CCAAT enhancer-binding protein β(C/EBPβ) and C/EBPδ transcription factors. J Biol Chem 276:48693–48701

    Article  PubMed  CAS  Google Scholar 

  • Cho I, Kim SG (2009) A novel mitogen-activated protein kinase phosphatase-1 and glucocorticoid receptor (GR) interacting protein-1-dependent combinatorial mechanism of gene transrepression by GR. Mol Endocrinol 23:86–99

    Article  PubMed  CAS  Google Scholar 

  • Cuzzocrea S, Salvemini D (2007) Molecular mechanisms involved in the reciprocal regulation of cyclooxygenase and nitric oxide synthase enzymes. Kidney Int 71:290–297

    Article  PubMed  CAS  Google Scholar 

  • Forrester MT, Foster MW, Stamler JS (2007) Assessment and application of the biotin switch technique for examining protein S-nitrosylation under conditions of pharmacologically induced oxidative stress. J Biol Chem 282:13977–13983

    Article  PubMed  CAS  Google Scholar 

  • Grishin AV, Wang J, Potoka DA et al (2006) Lipopolysaccharide induces cyclooxygenase-2 in intestinal epithelium via a noncanonical p38 MAPK pathway. J Immunol 176:580–588

    PubMed  CAS  Google Scholar 

  • Hirabayashi T, Shimizu T (2000) Localization and regulation of cytosolic phospholipase A2. Biochim Biophys Acta 1488:124–138

    Article  PubMed  CAS  Google Scholar 

  • Hou DX, Masuzaki S, Hashimoto F et al (2007) Green tea proanthocyanidins inhibit cyclooxygenase-2 expression in LPS-activated mouse macrophages: molecular mechanisms and structure-activity relationship. Arch Biochem Biophys 460:67–74

    Article  PubMed  CAS  Google Scholar 

  • Hughes-Fulford M, Yjandrawinata RR, Li CF, Sayyah S (2005) Arachidonic acid, an omega-6 fatty acid, induces cytoplasmic phospholipase A2 in prostate carcinoma cells. Carcinogenesis 26:1520–1526

    Article  PubMed  CAS  Google Scholar 

  • Jaffrey SR, Erdjument-Bromage H, Ferris D, Tempst P, Snyder SH (2001) Protein S-nitrosylation: a physiological signal for neuronal nitric acid. Nat Cell Biol 3:193–197

    Article  PubMed  CAS  Google Scholar 

  • Joo M, Wright JG, Hu NN et al (2007) Yin yang 1 enhances cyclooxygenase-2 gene expression in macrophages. Am J Physiol Lung Cell Mol Physiol 292:L1219–L1226

    Article  PubMed  CAS  Google Scholar 

  • Kang KW, Choi SY, Cho MK, Lee CC, Kim SG (2003) Thrombin induces nitric-oxide synthase via Ga12/13-coupled protein kinase C-dependent I-κBα and JNK-mediated I-κBα degradation. J Biol Chem 278:17368–17378

    Article  PubMed  CAS  Google Scholar 

  • Kang YJ, Wingerd BA, Arakawa T, Smith WL (2006) Cyclooxygenase-2 gene transcription in a macrophage model of inflammation. J Immunol 177:8111–8122

    PubMed  CAS  Google Scholar 

  • Kim SF, Huri DA, Snyder SH (2005) Inducible nitric oxide synthase binds, S-nitrosylates, and activates cyclooxygenase-2. Science 310:1966–1970

    Article  PubMed  CAS  Google Scholar 

  • Lamon BD, Upmacis RK, Deeb RS, Koyuncu H, Haijar D (2010) Inducible nitric oxide synthase gene deletion exaggerates MAPK-mediated cyclooxygenase-2 induction by inflammatory stimuli. Am J Physiol Heart Circ Physiol 299:H613–H623

    Article  PubMed  CAS  Google Scholar 

  • Lin CC, Lin WN, Wang WJ et al (2009) Functional coupling of COX-2 and cPLA2 induced by ATP in rat vascular smooth muscle cells: role of ERK1/2, p38 MAPK, and NF-κB. Cardiovasc Res 82:522–531

    Article  PubMed  CAS  Google Scholar 

  • Liu AMF, Wong YH (2004) G16-mediated activation of nuclear factor κB by the adenosine A1 receptor involves c-Src, protein kinase C, and ERK signaling. J Biol Chem 279:53196–53204

    Article  PubMed  CAS  Google Scholar 

  • Lodeiro P, Theodoropoulou M, Pardo M, Casanueva FF, Camina JP (2009) c-Src regulates Akt signaling in response to ghrelin via b-arrestin signaling-independent and -dependent mechanism. PLoS One 4(3):e4686. doi:10.1371

    Article  PubMed  Google Scholar 

  • Medzhitov R, Horng T (2009) Transcriptional control of the inflammatory response. Nat Rev Immunol 9:692–703

    Article  PubMed  CAS  Google Scholar 

  • Newman SP, Croxtall JD, Choudhury Q, Flower RJ (1997) The coordinate regulation of lipocortin 1, COX-2 and cPLA2 by IL-1b in A549 cells. Adv Exp Med Biol 407:249–253

    PubMed  CAS  Google Scholar 

  • Noha SM, Atanasov AG, Schuster D et al (2011) Discovery of a novel IKK-β inhibitor by ligand-based virtual screening techniques. Bioorg Med Chem Lett 21:577–583

    Article  PubMed  CAS  Google Scholar 

  • Perkins ND (2007) Integrating cell-signalling pathways with NF-kB and IKK function. Nat Rev Mol Cell Biol 8:49–62

    Article  PubMed  CAS  Google Scholar 

  • Reider G, Hofmann JA, Hatz RA, Stolte M, Enders GA (2003) Up-regulation of inducible nitric oxide synthase in Helicobacter pylori-associated gastritis may represent an increased risk factor to develop gastric carcinoma of the intestinal type. Int J Med Microbiol 293:403–412

    Article  Google Scholar 

  • Reynaert NL, Ckless K, Korn SH et al (2004) Nitric oxide represses inhibitory κB kinase through S-nitrosylation. Proc Natl Acad Sci USA 24:8945–8950

    Article  Google Scholar 

  • Slomiany BL, Slomiany A (2006) Cytosolic phospholipase A2 activation in Helicobacter pylori lipopolysaccharide-induced interference with gastric mucin synthesis. IUBMB Life 58:217–223

    Article  PubMed  CAS  Google Scholar 

  • Slomiany BL, Slomiany A (2009) Involvement of constitutive nitric oxide synthase in ghrelin-induced cytosolic phospholipase A2 activation in gastric mucosal cell protection against ethanol cytotoxicity. Inflammopharmacol 17:245–253

    Article  CAS  Google Scholar 

  • Slomiany BL, Slomiany A (2011a) Role of constitutive nitric oxide synthase in regulation of Helicobacter pylori-induced gastric mucosal cyclooxygenase-2 activation through S-nitrosylation: mechanism of ghrelin action. Open J Gastroenterol 1:13–22. doi:10.4236/ojgas.2011.12003

    Article  CAS  Google Scholar 

  • Slomiany BL, Slomiany A (2011b) Role of ghrelin-induced cSrc activation in modulation of gastric mucosal inflammatory responses to Helicobacter pylori. Inflammopharmacology 19:197–204

    Article  PubMed  CAS  Google Scholar 

  • Slomiany BL, Slomiany A (2011c) Ghrelin suppression of Helicobacter pylori-induced gastric mucosal iNOS is mediated through the inhibition of IKK-β activation by cNOS-dependent S-nitrosylation. Open J Cell Biol 1:1–10. doi:10.4236/ojcb

    Article  Google Scholar 

  • Slomiany BL, Slomiany A (2011d) Helicobacter pylori induces disturbances in gastric mucosal Akt activation through inducible nitric oxide synthase-dependent S-nitrosylation: effect of ghrelin. ISRN Gastroenterol. doi:10.5402/2011/308727

    PubMed  Google Scholar 

  • Slomiany BL, Slomiany A (2012a) Involvement of p38 MAPK-dependent activator protein (AP-1) activation in modulation of gastric mucosal inflammatory responses to Helicobacter pylori by ghrelin. Inflammopharmacology. doi:10.1007/s10787-012-0141-9

    PubMed  Google Scholar 

  • Slomiany BL, Slomiany A (2012b) Modulation of gastric mucosal inflammatory responses to Helicobacter pylori by ghrelin: role of cNOS-dependent IKK-β S-nitrosylation in the regulation of COX-2 activation. Am J Mol Biol 2:113–123. doi:10.4236/ajmb

    Article  CAS  Google Scholar 

  • Wroblewski LA, Peek RM, Wilson KT (2010) Helicobacter pylori and gastric cancer: factors that modulate disease risk. Clin Microbiol Rev 23:713–739

    Article  PubMed  CAS  Google Scholar 

  • Wu W, Sun Z, Wu J et al (2012) Trihydrophobin 1 phosphorylation by c-Src regulates MAPK/ERK signaling and cell migration. PLoS One 7(1):e29920. doi:10.1371/journal.pone.0029920

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Han C, Wu T (2008a) Activation of cytosolic phospholipase A2α through nitric oxide-induced S-nitrosylation. Involvement of inducible nitric-oxide synthase and cyclooxygenase-2. J Biol Chem 283:3077–3087

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Jhun BS, Ha CH, Jin ZG (2008b) Molecular mechanisms of ghrelin-mediated endothelial nitric-oxide synthase activation. Endocrinology 149:4183–4192

    Article  PubMed  CAS  Google Scholar 

  • Ye Y, Martinez JD, Perez-Polo RJ, Lin Y, Uretsky BF, Birnbaum Y (2008) The role of eNOS, iNOS, and NF-kB in upregulation and activation of cyclooxygenase-2 and infarct size reduction by atorvastin. Am J Physiol Heart Circ Physiol 295:H343–H351

    Article  PubMed  CAS  Google Scholar 

Download references

Ethical standards

The study was conducted in compliance with the institutional Animal Care and Use Committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. L. Slomiany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slomiany, B.L., Slomiany, A. Induction in gastric mucosal prostaglandin and nitric oxide by Helicobacter pylori is dependent on MAPK/ERK-mediated activation of IKK-β and cPLA2: modulatory effect of ghrelin. Inflammopharmacol 21, 241–251 (2013). https://doi.org/10.1007/s10787-013-0169-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-013-0169-5

Keywords

Navigation