Skip to main content

Advertisement

Log in

The kinin system in hypertensive pathophysiology

  • Review Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Cardiovascular diseases are the prime cause of death in the world. The kallikrein–kinin system has been implicated in the pathophysiology of the vascular smooth muscle and cardiac dysfunctions. In recent years, numerous observations obtained from clinical and experimental models of diabetes, hypertension, cardiac failure, ischemia, myocardial infarction and left ventricular hypertrophy, have suggested that the reduced activity of the local kallikrein–kinin system may be instrumental for the induction of cardiovascular-related diseases. The cardioprotective actions of the angiotensin-converting enzyme inhibitors are primarily dependent on protecting the kinin-forming components, which may cause regression of the left ventricular hypertrophy in hypertensive situations. The ability of kallikrein gene delivery to produce a wide spectrum of beneficial effects makes it an excellent candidate in treating hypertension, cardiovascular and renal diseases. In addition, stable kinin agonists may also be available in the future as therapeutic agents for cardiovascular and renal disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbas SA, Sharma JN, Yusof APM (1999a) Effect of bradykinin and its antagonist on survival time after coronary artery occlusion in rats. Gen Pharmacol 33:243–247

    Article  CAS  Google Scholar 

  • Abbas SA, Sharma JN, Yusof APM (1999b) The effect of bradykinin and its antagonist on survival time after coronary artery occlusion in hypertensive rats. Immunopharmacology 44:93–98

    Article  PubMed  CAS  Google Scholar 

  • Abdella N, Arouj M Al, Nakhi A Al, Assoussi A Al, Moussa M (1998) Non-insulin-dependent diabetes in Kuwait: prevalence rates and associated risk factors. Diabet Res Clin Pract 42:187–196

    Article  CAS  Google Scholar 

  • Adetuyibi A, Mills IH (1972) Relationship between urinary kallikrein and renal function, hypertension, and excretion of sodium and water in man. Lancet 2:203–207

    Article  PubMed  CAS  Google Scholar 

  • Akbar A, Sharma JN, Yusof APM (1998) Potentiation of bradykinin-induced responses in the intact and denuded epithelium of guinea pig tracheal preparations. Tissue React XX:95–100

    Google Scholar 

  • Almeida FA, Stella RCR, Voos A (1981) Malignant hypertension: a syndrome associated with low plasma kininogen and kinin potentiating factor. Hypertension 3:46–50

    Article  Google Scholar 

  • Amundsen E, Putter J, Friberger P, Knos M, Larsbraten M, Glaeseaon G (1979) Method for the determination of glandular kallikrein by means of chromogenic tripeptide substrate. Adv Exp Med Biol 120A:83–95

    PubMed  CAS  Google Scholar 

  • Antonacio M (1982) Angiotensin converting enzyme (ACE) inhibitors. Annu Rev Pharmacol Toxicol 22:57–87

    Article  Google Scholar 

  • Boyde TRC, Rahmatullah M (1980) Optimization of conditions for the colorimetric determination of citrulline using monoxime. Anal Biochem 107:424–431

    Article  PubMed  CAS  Google Scholar 

  • Braunwald E (1997) Cardiovascular medicine a turn of the millennium: triumphs, concern and opportunities. New Eng J Med 337:1360–1369

    Article  PubMed  CAS  Google Scholar 

  • Burch RM (1990) Kinin signal transduction: role of phosphoinositides and eicosanoids. J Cardiovasc Pharmacol 15(Suppl 6):S44–S46

    PubMed  CAS  Google Scholar 

  • Chao J, Chao L (1998) Kallikrein gene therapy in hypertension, cardiovascular and renal diseases. Gen Ther Mol Biol 1:301–308

    Google Scholar 

  • Chao J, Chao L (2005) Kallikrein–kinin in stroke, cardiovascular and renal disease. Exp Physiol 90(3):291–298

    Article  PubMed  CAS  Google Scholar 

  • Chao J, Bledsoe G, Yin H, Chao L (2006) The tissue kallikrein–kinin system protects against cardiovascular and renal diseases and ischemic stroke independently of blood pressure reduction. Biol Chem 387(6):665–675

    Article  PubMed  CAS  Google Scholar 

  • Cheng CP, Onishi K, Ohte N (1998) Functional effects of endogenous bradykinin in congestive heart failure. Am J Coll Cardiol 31:1679–1686

    Article  CAS  Google Scholar 

  • Cushman DW, Cheung HS (1971) Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem Pharmacol 20:1637–1648

    Article  CAS  Google Scholar 

  • De Freitas FM, Farraco EZ, De Azevedo DF (1964) General circulatory alterations induced by intravenous infusion of synthetic bradykinin in man. Circulation 29:66–70

    Article  Google Scholar 

  • Emanuelia C, Madeddu P (2003) Human tissue kallikrein: a new bullet for the treatment of ischemia. Curr Pharm Des 9(7):589–597

    Article  PubMed  Google Scholar 

  • Farmer SG, Burch RM (1992) Biochemical and molecular pharmacology of kinin receptors. Annu Rev Pharmacol Toxicol 32:511–536

    Article  PubMed  CAS  Google Scholar 

  • Figueiredo EL, Garcia Leao FV, De Oliveira LV, Moreira Mda C, De souza Figueiredo AF (2006) The amidase activity of human tissue kallikrein is significantly lower in the urine of patients with systolic heart failure. J Cardiovasc Fail 12(8):653–658

    Article  CAS  Google Scholar 

  • Friend LR, Morris BJ, Gaffney PT, Griffiths LR (1996) Examination of the role of nitric oxide synthase and renal kallikrein as candidate genes for essential hypertension. Exp Pharmacol Physiol 23:564

    Article  CAS  Google Scholar 

  • Green LC, Wagner DA, Glagowski J (1982) Analysis of nitrate, nitrite and15N nitrate in biological fluids. Anal Biochem 126:131–138

    Article  PubMed  CAS  Google Scholar 

  • Harvey JN, Jaffa AA, Margolius HS (1990) Renal kallikrein abnormalities of diabetic kidney. Diabetes 39:299–303

    Article  PubMed  CAS  Google Scholar 

  • Hashimto K, Hamamoto H, Honda Y (1978) Changes in components of the kinin system and hemodynamics in acute myocardial infarction. Am Heart J 95:619–626

    Article  Google Scholar 

  • Horton JK, Martin RC, Kalinka S, Cushing A, Kitcher JP, O’Sullivan MJ, Baxendale PM (1992) Enzyme immuno assays for the estimation of adenosine 3’, 5’ cyclic monophosphate and guanosine 3’, 5’ cyclic monophosphate in biological fluids. J Immunol Methods 155(1):31–40

    Article  PubMed  CAS  Google Scholar 

  • Jaffa AA, Durazo-Arvizu R, Zheng D, Lackland DT, Srikanth S, Garvey WT, Schmaier AH (2003) Plasma prekallikrein: a risk marker for hypertension and nephropathy in type 1 diabetes. Diabetes 52(5):1215–1221

    Article  PubMed  CAS  Google Scholar 

  • Jaffa AA, Miller DH, Bailey GS, Chao J, Margolius HS (1987) Abnormal regulation of renal kallikrein in experimental diabetes. J Clin Invest 80:1651–1659

    Article  PubMed  CAS  Google Scholar 

  • Jaffa AA, Rust PF, Mayfield RK (1995) Kinin, a mediator of diabetes induced glomerular hyper filtration. Diabetes 44:156–160

    Article  PubMed  CAS  Google Scholar 

  • James FW, Donaldson VH (1981) Decreased exercise tolerance and hypertension in severe hereditary deficiency of plasma kininogen. Lancet 1:889

    Article  PubMed  CAS  Google Scholar 

  • Kailasam MT, Martinez JA, Cervenka JH, Yen SSC, O’Connor DT, Parmer RJ (1998) Racial differences in renal kallikrein excretion: effect of the ovulatory cycle. Kidney Int 54:1652–1658

    Article  PubMed  CAS  Google Scholar 

  • Katori M, Majima M (1997) Role of the renal kallikrein–kinin system in the development of hypertension. Immunopharmacology 36:237–242

    Article  PubMed  CAS  Google Scholar 

  • Kichuck MR, Seyedi N, Zhang X (1996) Regulation of nitric oxide production in human coronary micro vessels and the contribution of local kinin formation. Circulation 94:44–51

    Article  Google Scholar 

  • Koch M, Wendorf M, Dendorfer A, Wolfrum S, Schulze K, Spillmann F, Schultheiss HP, Tschope C (2003) Cardiac kinin lecel in experimental diabetes mellitus: role of kinases. Am J Physiol Heart Circ Physiol 285(1):H418–H423

    PubMed  CAS  Google Scholar 

  • Koide A, Zeitlin IJ, Parratt JR (1993) Kinin formation in ischemic heart and aorta of anaesthetized rats. J Physiol 467:125P

    Google Scholar 

  • Leeb-Lundberg LMF, Marceau F, Muller-Esterl W, Pettibone DJ, Zuraw BL (2005) International Union of Pharmacology. XLV. Classification of the kinin receptor family: From Molecular Mechanisms to Pathophysiological Consequences. Pharmacol Rev 57:27–77

    Article  PubMed  CAS  Google Scholar 

  • Linz W, Wiemer G, Scholkens BA (1995) Contribution of kinins to the cardiovascular action of converting-enzyme inhibitors. Pharmacol Rev 47:25–50

    PubMed  CAS  Google Scholar 

  • Linz W, Wiemer G, Scholkens BA (1994) Cardioprotective actions of bradykinin in myocardial ischemia and left ventricular hypertrophy. Braz J Med Biol Res 8:1949–1954

    Google Scholar 

  • Linz W, Wiemer G, Scholkens BA (1993) Bradykinin prevents left ventricular hypertrophy in rats. J Hypertens 11(Suppl 5):S96–S97

    CAS  Google Scholar 

  • Locherner W, Parratt JR (1966) A comparison of the effects of locally and systemically administration of kinin on coronary blood flow and myocardial metabolism. Br J Pharmacol Chemother 26:17–26

    Article  Google Scholar 

  • Madeddu P, Milia AF, Salis MB (1998) Renovascular hypertension in bradykinin B2 receptor knockout mice. Hypertension 23:503–509

    Article  Google Scholar 

  • Majima M, Nishiyama K, Iguchi Y, Yao K, Ogino M, Ohno T, Sunahara N, Katoh K, Tatemichi N, Takei Y, Katori M (1996) Determination of bradykinin-(1-5) in inflammatory exudates by a new ELISA as a reliable indicator of bradykinin generation. Inflamm Res 45:416–423

    Article  PubMed  CAS  Google Scholar 

  • Margolius HS, Geller R, DeJong W (1972) Altered urinary kallikrein excretion in rats hypertension. Circ Res 30:358–362

    Article  PubMed  CAS  Google Scholar 

  • Margolius HS, Geller R, Pisano JJ (1971) Altered urinary kallikrein excretion in human hypertension. Lancet 2:1063–1065

    Article  Google Scholar 

  • Margolius HS, Horwwitz D, Pisano JJ (1974) Urinary kallikrein excretion in hypertensive man: relationship to sodium intake and sodium-retaining steroids. Circ Res 35:820–825

    Article  PubMed  CAS  Google Scholar 

  • Montanari D, Yin H, Dobrzynski E, Agata J, Yoshida H, Chao J, Chao L (2005) Kallikrein gene delivery improves serum glucose and lipid profiles and cardiac function in streptozotocin-induced diabetic rats. Diabetes 54:1573–1580

    Article  PubMed  CAS  Google Scholar 

  • Moreau ME, Garbacki N, Molinaro G, Brown NJ, Marceau F, Adam A (2005) The kallikrein–kinin system: current and future pharmacological targets. J Pharmacol Sci 99(1):6–38

    Article  PubMed  CAS  Google Scholar 

  • McGiff JC, Itskovitz HD, Terrango NA (1975) The action of bradykinin and eledoicin in the canine isolated kidney: a relationship to prostaglandins. Clin Sci Mol Med 49:125–131

    PubMed  CAS  Google Scholar 

  • Mills IH (1982) The renal kallikrein–kinin system and sodium excretion. Q J Exp Physiol 23:175–180

    Google Scholar 

  • Mohsin SSJ, Majima M, Katori M, Sharma JN (1992) Important suppressive roles of the kallikrein–kinin system during the developmental stage of hypertension in spontaneously hypertensive rats. Asia Pacific J Pharmacol 7:73–82

    CAS  Google Scholar 

  • Nolly HL, Britos J (1981) Kinin-forming enzyme in rat cardiac tissue. Am J Physiol 265:H1209–H1214

    Google Scholar 

  • Nolly HL, Carretero OA, Sclicli AG (1993) Kallikrein release by vascular tissue. Am J Physiol 265:H1209–H1214

    PubMed  CAS  Google Scholar 

  • Platts JK, Meadows P, Harvey JN (1996) The relationship between urinary kallikrein and glomerular filtration rate (GFR) in type-1 diabetes: studies with lithium. Immunopharmacology 33:351–353

    Article  PubMed  CAS  Google Scholar 

  • Pravence M, Ken V, Kunes J (1991) Cosegregation of blood pressure with kallikrein gene family polymorphism. Hypertension 17:242–246

    Article  Google Scholar 

  • Regoli D (1984) Neurohumoral regulation of precapillary vessels: the kallikrein–kinin system. J Cardiovasc Pharmacol 6(Suppl 3):S401–S412

    Article  PubMed  Google Scholar 

  • Rosatelli TB, Roselino AM, Dellalibera-Joviliano R, Reis ML, Donadi EA (2005) Increased activity of plasma and tissue kallikreins, plasma kininase II and salivary kallikrein in Pemphigus foliaceus (fogo selvagem). Br J Dermatol 152:650–657

    Article  PubMed  CAS  Google Scholar 

  • Rubin LE, Levi R (1995) Protective role of bradykinin in cardiac anaphylaxis. Circ Res 76:434–440

    Article  PubMed  CAS  Google Scholar 

  • Schini VB, Boulanger C, Regoli D, Vonhoutte PM (1990) Bradykinin stimulates the production of cyclicGMP via activation of B2 receptors in cultured porcine aortic endothelial cells. J Pharmacol Exp Ther 43:1823–1827

    Google Scholar 

  • Scholkens BA (1996) Kinins in the cardiovascular system. Immunopharmacology 33:209–217

    Article  PubMed  CAS  Google Scholar 

  • Sharma JN (2006) The tissue kallikrein–kininogem–kinin pathways: role in cardiovascular system. Arch Med Res 37:299–306

    Article  PubMed  CAS  Google Scholar 

  • Sharma JN (2005) The kallikrein–kinin system: from mediator of inflammation to modulator of cardioprotection. Immunopharmacology 12(5):591–596

    CAS  Google Scholar 

  • Sharma JN (2003) Does the kinin system mediate in cardiovascular abnormalities? An overview. J Clin Pharmacol 43:1187–1195

    Article  PubMed  CAS  Google Scholar 

  • Sharma JN (1993) Therapeutic prospects of bradykinin antagonists. Gen Pharmacol 24:267–274

    Article  PubMed  CAS  Google Scholar 

  • Sharma JN (1992) Involvement of the kinin-forming system in physiopathology of rheumatoid inflammation. Agents Actions 38(III):343–361

    CAS  Google Scholar 

  • Sharma JN (1990) Does kinin mediate the hypotensive action of angiotensin converting enzyme (ACE) inhibitors? Gen Pharmacol 21(4):451–457

    Article  PubMed  CAS  Google Scholar 

  • Sharma JN (1989) Contribution of kinin system to the antihypertensive action of angiotensin converting enzyme inhibitors. Adv Exp Med Biol 247A:197–205

    PubMed  CAS  Google Scholar 

  • Sharma JN, Abbas SA (2005) Bradykinin antagonist abolishes beneficial effect of captopril on duration of survival after acute coronary artery ligation in hypertensive rats. Pharmacol Res 52:211–215

    Article  PubMed  CAS  Google Scholar 

  • Sharma JN, Amrah SS, Noor AR (1995) Suppression of hypotensive responses of captopril and enalapril by kallikrein inhibitor aprotinin in spontaneously hypertensive rats. Pharmacology 50:363–369

    Article  PubMed  CAS  Google Scholar 

  • Sharma JN, Buchanan WW (1994) Pathogenic responses of bradykinin system in chronic inflammatory rheumatoid disease. Exp Toxicol Pathol 46:421–433

    Article  PubMed  CAS  Google Scholar 

  • Sharma JN, Fernandez PG, Laher I (1984) Differential sensitivity of Dahl salt-sensitive and salt-resistant rats to the hypotensive action of acute nifedipine administration. Can J Physiol Pharmacol 62:241–243

    Article  PubMed  CAS  Google Scholar 

  • Sharma JN, Fernandez PG, Kim BK (1983) Cardiac regression and blood pressure control in Dahl rats treated with enalapril maleate (MK 421), an angiotensin converting enzyme inhibitor. J Hypertens 1:251–256

    Article  PubMed  CAS  Google Scholar 

  • Sharma JN, Mohsin SSJ (1990) The role of chemical mediators in pathogenesis of inflammation with emphasis on the kinin system. Exp Pathol 38:73–96

    Article  PubMed  CAS  Google Scholar 

  • Sharma JN (2002) Cardiovascular properties of the kallikrein–kinin system. Curr Med Res Opin 18:10–17

    Article  PubMed  CAS  Google Scholar 

  • Sharma JN, Uma K (2002) Effect of captopril on urinary kallikrein, blood pressure and myocardial hypertrophy in diabetic spontaneously hypertensive rats. Pharmacology 64:196–200

    Article  PubMed  CAS  Google Scholar 

  • Sharma JN, Uma K, Yusof APM (1999) Altered cardiac tissue and plasma kininogen levels in hypertensive and diabetic rats. Immunopharmacology 43:129–132

    Article  PubMed  CAS  Google Scholar 

  • Sharma JN, Uma K, Yusof APM (1998) Left ventricular hypertrophy and its relation to cardiac kinin-forming system in hypertensive and diabetic rats. Int J Cardiol 63:229–235

    Article  PubMed  CAS  Google Scholar 

  • Sharma JN, Uma K (1996) Cardiac kallikrein in hypertensive and normotensive rats with and without diabetes. Immunopharmacology 33:341–343

    Article  PubMed  CAS  Google Scholar 

  • Sharma JN, Uma K, Noor AR (1996) Blood pressure regulation by the kallikrein–kinin system. Gen Pharmacol 27:55–63

    Article  PubMed  CAS  Google Scholar 

  • Sharma JN, Zeitlin IJ (1981) Altered plasma kininogen in clinical hypertension. Lancet 1:125–126

    Google Scholar 

  • Sharma JN, Zeitlin IJ (1977) Indomethacin in low concentration potentiates the actions of some spasmogens on the isolated estrous rat uterus. J Pharm Pharmacol 29:316–317

    Article  PubMed  CAS  Google Scholar 

  • Silberbauer K, Stanek B, Temple H (1982) Acute hypotensive effect of captopril in man modified by prostaglandin synthesis inhibition. Br J Clin Pharmacol 14:87S–93S

    Article  PubMed  Google Scholar 

  • Smith C, Campbell S, Albano J (1999) Urinary kallikrein excretion in normotensive and hypertensive pregnancies: 8 years later. Immunopharmacol 44:177–182

    Article  CAS  Google Scholar 

  • Spillmann F, Van Linthout S, Schultheiss HP, Tschope C (2006) Cardioprotective mechanisms of the kallikrein–kinin system in diabetic cardiopathy. Curr Opin Nephrol Hypertens 15(1):22–29

    Article  PubMed  CAS  Google Scholar 

  • Su JB (2006) Kinins and cardiovascular diseases. Curr Pharm Des 12(26):3423–3435

    Article  PubMed  CAS  Google Scholar 

  • Tan Y, Wang B, Keum JS, Jaffa AA (2005) Mechanisms through which bradykinin promotes glomerular injury in diabetes. Am J Physiol Renal Physiol 288(3):F483–F492

    Article  PubMed  CAS  Google Scholar 

  • Tschope G, Gavriluk V, Reinecke A (1996) Bradykinin excretion is increased in severely hyperglycemic streptozotocin-diabetic rats. Immunopharmacology 33:344–348

    Article  PubMed  CAS  Google Scholar 

  • Tshope C, Reinecke A, Seidl U, Yu M, Gavriluk V, Riester U, Gohlke P, Graf K, Bader M, Hilgenfeldt U, Pesquero JB, Ritz E, Unger T (1999) Functional, biochemical, and molecular investigations of renal kallikrein–kinin system in diabetic rats. Am J Physiol 277:H2333–H2340

    Google Scholar 

  • Vegh A, Rapp JG, Parratt JR (1994) Attenuation of the antiarrhythmic effects of ischemia preconditioning by blocked of bradykinin B2 receptors. Br J Pharmacol 107:1167–1172

    Article  Google Scholar 

  • Vegh A, Szekeres L, Parratt RJ (1991) Local intracoronary infusions of bradykinin profoundly reduce the severity of ischemia-induced arrhythmia in anaesthetized dogs. Br J Pharmacol 104:294–295

    Article  PubMed  CAS  Google Scholar 

  • Vieira MAR, Moreira FM, Maack T (1994) Conversion of T-kinin to bradykinin by the rat kidney. Biochem Pharmacol 47:1693–1699

    Article  PubMed  CAS  Google Scholar 

  • Walls TM, Sheehy R, Hartman JC (1994) Role of bradykinin in myocardial preconditioning. J Pharmacol Exp Ther 270:681–689

    Google Scholar 

  • Wang C, Chao L, Chao J (1994) Human tissue kallikrein induces hypotension in transgenic mice. Hypertension 23:236–243

    Article  PubMed  CAS  Google Scholar 

  • Webster ME, Gilmore JP (1964) Influence of kallidin-10 on renal function. Am J Physiol 206:714–718

    PubMed  CAS  Google Scholar 

  • Woolly-Miller C, Chao J, Chao L (1989) Restriction fragment length polymorphism’s mapped in spontaneously hypertensive rats using kallikrein probs. J Hypertens 7:865–871

    Article  Google Scholar 

  • Zhu P, Zugga CE, Simper D (1995) Bradykinin improves post-ischemic recovery in that rat heart: role of high energy phosphate, nitric oxide and prostacycline. Cardiovacs Res 29:658–663

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagdish N. Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, J.N. The kinin system in hypertensive pathophysiology. Inflammopharmacol 21, 1–9 (2013). https://doi.org/10.1007/s10787-012-0137-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-012-0137-5

Keywords

Navigation