Skip to main content
Log in

Application of the Amplitude-Frequency Formulation to a Nonlinear Vibration System Typified by a Mass Attached to a Stretched Wire

  • Published:
International Applied Mechanics Aims and scope

He’s amplitude–frequency formulation is applied to study the periodic solutions of a strongly nonlinear system. This system corresponds to the motion of a mass attached to a stretched wire. The usefulness and effectiveness of the proposed technique is illustrated. The results are compared with exact solutions and those obtained by the harmonic balance. Approximate frequencies are valid in the entire range of vibration amplitudes. The agreement between the approximate and exact frequencies is demonstrated and discussed

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. E. Mickens, Oscillations in Planar Dynamics Systems, World Scientific, Singapore (1996).

    Book  Google Scholar 

  2. A. Belendez, A. Hernandez, T. Bele′ndez, M. L. Alvarez, S. Gallego, M. Ortuno, and C. Neipp, “Application of the harmonic balance method to a nonlinear oscillator typified by a mass attached to a stretched wire,” J. Sound Vibr., 302, 1018–1029 (2007).

    Article  ADS  Google Scholar 

  3. J. H. He, “Some asymptotic methods for strongly nonlinear equations,” Int. J. Modern Phys. B, 20, No. 10, 1141–1199 (2006).

    Article  MATH  ADS  Google Scholar 

  4. J. H. He, “Àn improved amplitude-frequency formulation for nonlinear oscillators,” Int. J. Nonlin. Sci. Numer. Simul., 9, No. 2, 211–212 (2008).

    Google Scholar 

  5. L. Zhao, “Chinese mathematics for nonlinear oscillators,” Topolog. Meth. Nonlin. Anal., 31, No. 2, 383–387 (2008).

    MATH  Google Scholar 

  6. J. Fan, “Application of He’s frequency–amplitude formulation to the Duffing harmonic oscillator,” Topolog. Meth. Nonlin. Anal., 31, No. 2, 389–394 (2008).

    MATH  Google Scholar 

  7. J. H. He, “An elementary introduction to recently developed asymptotic methods and nanomechanics in textile engineering,” Int. J. Modern Phys B, 22, No. 21, 3487–3578 (2008).

    Article  MATH  ADS  Google Scholar 

  8. L. Geng and X. C. Cai, “He’s frequency formulation for nonlinear oscillators,” Europ. J. Phys., 28, 923–931 (2007).

    Article  MATH  Google Scholar 

  9. H. L. Zhang, “Application of He’s frequency–amplitude formulation to an x(1/3) force nonlinear oscillator,” Int. J. Nonlin. Sci. Numer. Simul., 9, No. 3, 297–300 (2008).

    Article  Google Scholar 

  10. Z. L. Tao, “Frequency–amplitude relationship of the Duffing harmonic oscillator,” Topolog. Meth. Nonlin. Anal., 31, 279–285 (2008).

    MATH  Google Scholar 

  11. F. O. Zengin, M. O. Kaya, and S. A. Demirbag, “Application of the parameter-expansion method to nonlinear oscillators with discontinuities,” Int. J. Nonlin. Sci. Numer. Simul., 9, No. 3, 267–270 (2008).

    Article  MathSciNet  Google Scholar 

  12. M. Akbarzade, D. D. Ganji, and H. Pashaei, “Analysis of nonlinear oscillators with u n force by He’s energy balance method,” Progress in Electromagnetics Research C, 3, 57–66 (2008).

    Article  Google Scholar 

  13. H. Pashaei, D. D. Ganji, and M. Akbarzade, “Application of the energy balance method for strongly nonlinear oscillators,” Progress in Electromagnetics Research M, 2, 47–56 (2008).

    Article  Google Scholar 

  14. H. Babazadeh, D. D. Ganji, and M. Akbarzade, “He’s energy balance method to evalute the effect of amplitude on the natural frequency in nonlinear vibration systems,” Progress in Electromagnetics Research. M, 4, 143–154 (2008).

    Article  Google Scholar 

  15. D. D. Ganji, N. R. Malidarreh, and M. Akbarzade, “Comparison of energy balance period for arising nonlinear oscillator equations (He’s energy balance period for nonlinear oscillators with and without discontinuities),” Acta Appl. Math., 108, 353–362 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  16. J. H. He, G. C. Wu, and F. Austin, “The variational iteration method which should be followed,” Nonlinear Science Letters. A. Mathematics, Physics and Mechanics, 1, No. 1, 1–30 (2010)

    Google Scholar 

  17. D. D. Ganji and A. Sadighi, “Application of He’s homotopy-perturbation method to nonlinear coupled systems of reaction–diffusion equations,” Int. J. Nonlin. Sci. Numer. Simul., 7, No. 4, 411–418 (2006).

    Article  Google Scholar 

  18. A. Fereidoon, Y. Rostamiyan, M. Akbarzade, and Davood Domiri Ganji, “Application of He’s homotopy perturbation method to nonlinear shock damper dynamics,” Arch. Appl. Mech., 80, No. 6, 641–649 (2010).

    Article  MATH  ADS  Google Scholar 

  19. J. H. He, “New interpretation of homotopy perturbation method,” Int. J. Modern Phys.,B20, No. 18, 2561–2568 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Akbarzade.

Additional information

Published in Prikladnaya Mekhanika, Vol. 50, No. 4, pp. 137–144, July–August 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbarzade, M., Farshidianfar, A. Application of the Amplitude-Frequency Formulation to a Nonlinear Vibration System Typified by a Mass Attached to a Stretched Wire. Int Appl Mech 50, 476–483 (2014). https://doi.org/10.1007/s10778-014-0650-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-014-0650-x

Keywords

Navigation