Skip to main content
Log in

On models in the theory of stability of multiwalled carbon nanotubes in matrix

  • Published:
International Applied Mechanics Aims and scope

Abstract

Models in the theory of stability of multiwalled carbon nanotubes in a polymer matrix are justified. Some results on the fracture mechanics of nanocomposites are presented. New areas of research in mechanics suggested by a group of well-known scientists are discussed

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Born and K. Huang, Dynamic Theory of Crystal Lattices, Oxford University Press, London (1954).

    Google Scholar 

  2. A. N. Guz, Stability of Three-Dimensional Deformable Bodies [in Russian], Naukova Dumka, Kiev (1971).

    Google Scholar 

  3. A. N. Guz, Stability of Elastic Bodies under Finite Strains [in Russian], Naukova Dumka, Kiev (1973).

    Google Scholar 

  4. A. N. Guz, Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies [in Russian], Vyshcha Shkola, Kiev (1986).

    Google Scholar 

  5. A. N. Guz, Mechanics of Compressive Failure of Composite Materials [in Russian], Naukova Dumka, Kiev (1990).

    Google Scholar 

  6. A. N. Guz, Description and study of some nonclassical problems of fracture mechanics and related mechanisms,” Int. Appl. Mech., 36, No. 12, 1537–1564 (2000).

    Article  Google Scholar 

  7. A. N. Guz and J. J. Rushchitsky, “Nanomaterials: On the mechanics of nanomaterials,” Int. Appl. Mech., 39, No. 11, 1271–1293 (2003).

    Article  Google Scholar 

  8. A. N. Guz (ed.), Mechanics of Composite Materials [in Russian], in 12 vols., Naukova Dumka (Vols. 1–4), A.S.K. (Vols. 5–12), Kiev (1993–2003).

  9. C. Bower, W. Zhu, S. N. Jin, and O. Zhou, “Plasma-induced alignment of carbon nanotubes,” Appl. Phys. Lett., 77, 830–832 (2000).

    Article  ADS  Google Scholar 

  10. B. Budiansky, “Micromechanics,” Composites and Structures, 16, No. 1, 3–13 (1983).

    Article  MATH  Google Scholar 

  11. B. Budiansky and N. A. Fleek, “Compressive kinking of fibre composites: a topical review,” Appl. Mech. Rev., 47, No. 6, Part 2, 246–250 (1994).

    Article  Google Scholar 

  12. B. Budiansky, N. A. Fleek, and I. C. Amazigo, “On kink-band propagation in fiber composites,” J. Mech. Phys. Solids, 46, 1637–1653 (1998).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  13. T. W. Chou, R. L. McCullough, and R. B. Pipes, “Composites,” Sci. Am., 254, 193–203 (1985–1986).

    Google Scholar 

  14. N. A. Fleek, “Compressive failure of fiber composites,” in: Advances in Applied Mechanics, 33, Academic Press, New York (1997), pp. 43–119.

    Google Scholar 

  15. A. N. Guz, Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies, Springer-Verlag, Berlin-Heidelberg-New York (1999).

    MATH  Google Scholar 

  16. A. N. Guz, “Three-dimensional theory of stability of carbon nanotube in matrix,” Int. Appl. Mech., 42, No. 1, 19–31 (2006).

    Article  MathSciNet  Google Scholar 

  17. A. N. Guz, V. A. Dekret, and Yu. V. Kokhanenko, “Two-dimensional stability problem for two interacting short fibers in a composite: In-line arrangement,” Int. Appl. Mech., 40, No. 9, 994–1001 (2004).

    Article  Google Scholar 

  18. A. N. Guz, A. A. Rodger, and I. A. Guz, “Developing a compressive failure theory for nanocomposites,” Int. Appl. Mech., 41, No. 3, 233–255 (2005).

    Article  Google Scholar 

  19. I. A. Guz and J. J. Rushchitsky, “Comparing the evolution characteristics of waves in nonlinearly elastic micro-and nanocomposites with carbon fillers,” Int. Appl. Mech., 40, No. 7, 785–793 (2004).

    Article  Google Scholar 

  20. I. A. Guz and J. J. Rushchitsky, “Theoretical description of a delamination mechanism in fibrous micro-and nanocomposites,” Int. Appl. Mech., 40, No. 10, 1129–1136 (2004).

    Google Scholar 

  21. Ch. Jochum and J.-C. Grandidier, “Microbuckling elastic modeling approach of a single carbon fibre embedded in an epoxy matrix,” Composites Science and Technology, 64, 2441–2449 (2004).

    Article  Google Scholar 

  22. M. E. Kassner, Sia Nemat-Nasser, Shigang Suo, et al., “New directions in mechanics,” Mech. Mater., 37, 231–259 (2005).

    Article  Google Scholar 

  23. Kin-Tak Lau and D. Hui, “The revolutionary creation of new advanced materials—carbon nanotube composite,” Composites, Part B: Engineering, 33, 263–277 (2002).

    Article  Google Scholar 

  24. O. Lourie, D. M. Cox, and H. D. Wagner, “Buckling and collapse of embedded carbon nanotubes,” Phys. Rev. Lett., 81, No. 8, 1638–1641 (1998).

    Article  ADS  Google Scholar 

  25. “Micromechanics of composite materials: focus on Ukrainian research,” Appl. Mech. Rev. (special issue), 45, No. 2, 13–101 (1992).

  26. G. M. Olegard, R. B. Pipes, and P. Hubert, “Comparison of two models of SWCN polymer composites,” Composites Science and Technology, 64, No. 7, 1011–1020 (2004).

    Article  Google Scholar 

  27. H. R. Shetty and T. W. Chou, “Mechanical properties and failure characteristics of FP-aluminum and W-aluminum composites,” Metall. Trans. A, 16, No. 5, 853–864 (1985).

    Google Scholar 

  28. N. H. Tai, M. K. Yeh, and J. H. Liu, “Enhancement of the mechanical properties of carbon nanotube composites using a carbon nanotube network as the reinforcement,” Carbon, 42, Nos. 12–13, 2774–2777 (2004).

    Article  Google Scholar 

  29. E. T. Thostenson and T. W. Chou, “On the elastic properties of carbon nanotube-based composites: modeling and characterization,” J. Phys. D, 36, No. 5, 573–582 (2003).

    Article  ADS  Google Scholar 

  30. E. T. Thostenson and T. W. Chou, “Nanotube buckling in aligned multi-wall carbon nanotube composites,” Carbon, 42, No. 14, 3015–3018 (2004).

    Article  Google Scholar 

  31. E. T. Thostenson, Li Chunyu, and T. W. Chou, “Nanocomposites in context. (Review),” Composites Science and Technology, 65, 491–516 (2005).

    Article  Google Scholar 

  32. M. A. Wadee, G. W. Hunt, and M. A. Peletier, “Kink band instability in layered structures,” J. Mech. Phys. Solids, 52, 1071–1091 (2004).

    Article  MATH  ADS  Google Scholar 

  33. Y. Iwahori, S. Ishiwata, T. Sumizawa, and T. Ishikawa, “Mechanical properties improvements in two-phase and three-phase composites using carbon nano-fiber dispersed resin,” Composites Part A: Appl. Sci. Manufact., 36, 1430–1439 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Prikladnaya Mekhanika, Vol. 42, No. 6, pp. 3–21, June 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guz, A.N., Guz, I.A. On models in the theory of stability of multiwalled carbon nanotubes in matrix. Int Appl Mech 42, 617–628 (2006). https://doi.org/10.1007/s10778-006-0129-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-006-0129-5

Keywords

Navigation