Skip to main content
Log in

Fuzzy Type Representation of the Fredkin Gate in Quantum Computation with Mixed States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this work, we introduce a fuzzy type representation of a quantum version of the Fredkin gate in the framework of quantum computation with mixed states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. The ladder operators provided in the above construction of the S W A P (m, l) gate are used to represent the multilevel atomic systems like e.g.,Rubidium and other Rydberg atoms which are well regarded as promising candidates for implementations in quantum computing.

References

  1. Aharanov, D., Kitaev, A., Nisan, N.: Quantum circuits with mixed states. In: Proceedings of the 13th Annual ACM Symposium on Theory of Computation, pp. 20–30. STOC (1997)

  2. Bennett, C.H.: Notes on Landauer’s principle, reversible computation, and Maxwell’s Demon. Stud. Hist. Philos. Sci. B: Stud. Hist. Philos. Mod. Phys. 34(3), 501–510 (2003)

    ADS  MATH  MathSciNet  Google Scholar 

  3. Cattaneo, G., Leporati, A., Leporini, R.: Fredkin gates for finite-valued reversible and conservative logics. J. Phys. A 35(46) (2002)

  4. Dalla Chiara, M.L, Giuntini, R., Leporini, R., Sergioli, G.: Holistic logical arguments in quantum computation. Math. Slovaca 66, 313–334 (2016)

    MATH  MathSciNet  Google Scholar 

  5. Dalla Chiara, M.L., Leporini, R., Sergioli, G.: Entanglement and quantum logical gates. Part II. Int. J. Theor. Phys. 54(12), 4530–4545 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dalla Chiara, M.L., Giuntini, R., Greechie, R.: Reasoning in Quantum Theory, Sharp and Unsharp Quantum Logics. Kluwer, Dordrecht-Boston-London (2004)

    Book  MATH  Google Scholar 

  7. Domenech, G., Freytes, H.: Fuzzy propositional logic associated with quantum computational gates. Int. J. Theor. Phys. 34, 228–261 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Driankov, D., Hellendoorn, H., Reinfrank, M.: An Introduction to Fuzzy Control. Springer, Berlin/Heidelberg (1993)

    Book  MATH  Google Scholar 

  9. Di Nola, A., Dvurečenskij, A.: Product MV-algebras. Multi. Val. Logic 6, 193–215 (2001)

    MATH  MathSciNet  Google Scholar 

  10. Fredkin, E., Toffoli, T.: Conservative logic. Collision-Based Computing, pp 47–81. Springer, London (2002)

    Book  Google Scholar 

  11. Freytes, H., Sergioli, G., Aricó, A.: Representing continuous t-norms in quantum computation with mixed states. J. Phys. A 43(465306) (2010)

  12. Freytes, H., Domenech, G.: Quantum computational logic with mixed states. Math. Log. Q. 59, 27–50 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. Freytes, H., Giuntini, R., Leporini, R., Sergioli, G.: Entanglement and quantum logical gates. Part I. Int. J. Theor. Phys. 54(12), 4518–4529 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  14. Freytes, H., Sergioli, G.: Fuzzy approach for Toffoli gate in quantum computation with mixed states. Rep. Math. Phys. 74(2), 159–180 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Giuntini, R., Ledda, A., Sergioli, G., Paoli, F.: Some generalizations of fuzzy structures in quantum computational logic. Int. J. Gen. Syst. 40, 61–83 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gudder, S.: Quantum computational logic. Int. J. Theor. Phys. 42, 39–47 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kraus, K.: States, Effects and Operations. Springer, Berlin (1983)

    MATH  Google Scholar 

  18. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5.3, 183–191 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ledda, A., Sergioli, G.: Towards Quantum Computational Logics. Int. J. Theor. Phys. 49(12), 3158–3165 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Montagna, F.: Functorial representation theorems for M V δ algebras with additional operators. J. Algebra 238, 99–125 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Nielsen, A.M., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  22. Sagawa, T.: Thermodynamic and logical reversibilities revisited. J. Stat. Mech: Theory Exp. 3(P03025) (2014)

  23. Toffoli, T.: Reversible computing. In: Proceedings of the 7th Colloquium on Automata, Languages and Programming, pp. 632–644. Springer, London (1980)

Download references

Acknowledgements

This work was partially supported by the Sardinia Region Project “Modeling the uncertainty: quantum theory and imaging processing”, LR 7/8/2007. RAS CRP-59872. One of the authors, RV, would like to thank R Srikanth of PPISR, Bengaluru, for illuminating discussions and valuable opinions about the thermo-economy of conservative gates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Sergioli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatrama, R., Sergioli, G., Freytes, H. et al. Fuzzy Type Representation of the Fredkin Gate in Quantum Computation with Mixed States. Int J Theor Phys 56, 3860–3868 (2017). https://doi.org/10.1007/s10773-017-3362-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3362-2

Keywords

Navigation