Skip to main content
Log in

Protecting Qubit-Qubit Entanglement by Quantum Screening

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We study the entanglement protection between two identical qubits interacting with independent zero-temperature reservoir beyond the Born-Markoivan approximation. The principle is based on an analog of a zero-ground quantum screening method in an electronic circuit, it employs an auxiliary casing system to erase the excited state to the ground state frequently to inhibit the decoherence. We find that the auxiliary casing system plays a crucial role and the number of screening events is proportional to the entanglement protection, the physical mechanism is also given in the context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Informatin. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  2. Yeo, Y., Chua, W.K.: Teleportation and dense coding with genuine multipartite entanglement. Phys. Rev. Lett. 96, 060502 (2006)

    Article  ADS  Google Scholar 

  3. Anargyros, P., Joseph, F.T.: Measures of quantum computing speedup. Phys. Rev. A 88, 022316 (2013)

    Article  Google Scholar 

  4. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995)

    Article  ADS  Google Scholar 

  5. Deutsch, D., Ekert, A., Jozsa, R., Macchiavello, C., Popescu, S., Sanpera, A.: Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77, 2818 (1996)

    Article  ADS  Google Scholar 

  6. Laurat, J., Choi, K.S., Deng, H., Chou, C.W., Kimble, H.J.: Heralded entanglement between atomic ensembles: preparation, decoherence, and scaling. Phys. Rev. Lett. 99, 180504 (2007)

    Article  ADS  Google Scholar 

  7. Yu, T., Eberly, J.H.: Quantum open system theory: bipartite aspects. Phys. Rev. Lett. 97, 140403 (2006)

    Article  ADS  Google Scholar 

  8. Laura, T.K., Christian, T., Schmiegelow, T., Osvaldo, J.F., Stephen, P.W., Miguel, A.L.: Entanglement-breaking channels and entanglement sudden death. Phys. Rev. A 94, 012345 (2016)

    Article  Google Scholar 

  9. Almeida, M.P., deMelo, F., Hor-Meyll, M., Salles, A., Walborn, S.P., Ribeiro, P.H., Davidovich, L.: Environment-induced sudden death of entanglement. Science. 316, 579 (2007)

    Article  ADS  Google Scholar 

  10. Bellomo, B., Franco, R.L., Compagno, G.: Non-Markovian Effects on the dynamics of entanglement. Phys. Rev. Lett. 99, 160502 (2007)

    Article  ADS  Google Scholar 

  11. Bellomo, B., Franco, R.L., Sabrina, M., Giuseppe, C.: Entanglement trapping in structured environments. Phys. Rev. A 78, 060302 (2008)

    Article  ADS  Google Scholar 

  12. Sabrina, M., Francesco, F., Rosa, L.Z., Nicola, L.G., Francesco, P.: Protecting entanglement via the quantum zeno effect. Phys. Rev. Lett. 100, 090503 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Facchi, P., Passcazio, S.: Quantum zeno subspaces. Phys. Rev. Lett. 89, 080401 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Paolo, F., Giuseppe, M., Saverio, P.: Quantum Zeno dynamics and quantum Zeno subspaces. Jour. Phys.: Confer. Ser. 196, 012017 (2009)

    Google Scholar 

  15. Alexander, H.K., Klaus, M.: Quantum Zeno effect in parameter estimation. Phys. Rev. A 92, 032124 (2015)

    Article  Google Scholar 

  16. Kishore, T., Anirban, P., Jan, P.: Linear and nonlinear quantum Zeno and anti-Zeno effects in a nonlinear optical coupler. Phys. Rev. A 93, 022107 (2016)

    Article  Google Scholar 

  17. Zhang, Y.J., Man, Z.X., Xia, Y.J., Guo, G.C.: Entanglement sudden death in band gaps. Eur. Phys. J. D 58, 397–401 (2010)

    Article  ADS  Google Scholar 

  18. Xiao, X., Fang, M.F., Li, Y.L., Zeng, K., Wu, C.: Robust entanglement preserving by detuning in Non-Markoivan regime. J. Phys. B: At. Mol. Opt. Phys. 42, 235502 (2009)

    Article  ADS  Google Scholar 

  19. Zhang, Y.J., Han, W., Fan, H., Xia, Y.J.: Enhancing entanglement trapping by weak measurement and quantum measurement reversal. Annals. Phys. 354, 203–212 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  20. Yong, S.K., Jong, C.L., Osung, K., Yoon, H.K.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8(2), 117–120 (2012)

    Google Scholar 

  21. Filip, R.: Screening of a qubit from the influence of a zero-temperature reservoir. Phys. Rev. A 67, 014308 (2003)

    Article  ADS  Google Scholar 

  22. Maniscalco, S., Petruccione, F.: Non-markovian dynamics of a qubit. Phys. Rev. A 73, 012111 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  23. Breue, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Cambridge (2003)

    Google Scholar 

  24. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  25. Weidinger, M., Varcoe, B.T.H., Heerlein, R., Walther, H.: Trapping states in the micromaser. Phys. Rev. Lett. 82, 3795–3798 (1999)

    Article  ADS  Google Scholar 

  26. Misra, B.E., Sudarshan, C.G.: The Zeno’s paradox in quantum theory. J. Math. Phys. 18, 756 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  27. Luis, A., Perina, J.: Zeno effect in parametric down-conversion. Phys. Rev. Lett. 76, 4340 (1996)

    Article  ADS  Google Scholar 

  28. Zhang, Y.J., Han, W., Fan, H., Xia, Y.J.: Enhancing entanglement trapping by weak measurement and quantum measurement reversal. Annals. Phys. 354, 203–212 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  29. Lazarou, C., Luoma, K., Maniscalco, S., Piilo, J., Garraway, B.M.: Entanglement trapping in a nonstatioinary structured reservoir. Phys. Rev. A 86, 012331 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Huang.

Additional information

Supported By The Projection Of Enhancing School With Innovation Of Guangdong Ocean University (Grants No. Gdou2014050231) And The Natural Science Foundation Of Guangdong Province(Grants No. 2015A030310354).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, W.Q., Huang, J. Protecting Qubit-Qubit Entanglement by Quantum Screening. Int J Theor Phys 56, 1449–1455 (2017). https://doi.org/10.1007/s10773-017-3285-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3285-y

Keywords

Navigation