Skip to main content
Log in

New Maximally Entangled States for Pattern-Association Through Evolutionary Processes in a Two-Qubit System

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

New set of maximally entangled states (Singh-Rajput MES), constituting orthonormal eigen bases, has been revisited and its superiority and suitability in pattern-association (Quantum Associative Memory, QuAM) have been demonstrated. Using these MES as memory states in the evolutionary process of pattern storage in a two-qubit system, it has been shown that the first two states of Singh-Rajput MES are useful for storing the pattern |11> and the last two of these MES are useful in storing the pattern |10> Recall operations of quantum associate memory (QuAM) have been conducted through evolutionary process in terms of unitary operators by separately choosing Singh-Rajput MES and Bell’s MES as memory states and it has been shown that Singh-Rajput MES as valid memory states for recalling the patterns in a two-qubit system are much more suitable than Bell’s MES.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feynman, R.P.: Int. Theor. Phys. 26(21), 467–488 (1982)

    Article  Google Scholar 

  2. Tan, H.T., Zhang, W.M., Li, G.: Phys. Rev. A 83, 032102–108 (2011)

    Article  ADS  Google Scholar 

  3. Grover, L.K.: . In: Proc. 28th Ann. ACM. Symp. On Theory of Computing, Philadelphia,. Pennsylvania, ACM Press, pp 212–221 (1996)

  4. Simon, D.: SIAM Journ. Comp. 26(5), 1474–1483 (1997)

    Article  Google Scholar 

  5. Shor, P.W.: . In: Proc. 35th Ann. Symp., Found of Computer Science, Los. Alamitos IEEE Comp. Press (1994) 20–22

  6. Wang, Z.S., Wu, C., Feng, X.L., Kwek, L.C., Lai, C.H., Oh, C.H., Vedral, V.: Phys. Rev. A 76, 044303–307 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  7. Wang, Z.S.: Phys. Rev. A 79, 024304–308 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  8. Smirne, A., Breuer, H.P., Piilo, J., Vacchini, B.: Phys. Rev. A 84, 062114–119 (2010)

    Article  ADS  Google Scholar 

  9. Benenti, G., Casati, G.: Phys. Rev. E 79, 025201R–205R (2009)

    Article  ADS  Google Scholar 

  10. Hill, S., Wooters, W.K.: Phys. Rev. Lett. 78(26), 5022–5025 (1997)

    Article  ADS  Google Scholar 

  11. Wooters, W.K.: Phys. Rev. Lett. 80(10), 2245–2248 (1998)

    Article  ADS  Google Scholar 

  12. Rungta, P., Buzek, V., Caves, C.M., Hillery, M., Millburn, G.J.: Phys. Rev. A 64(4), 042315–320 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  13. Coffman, V., Kundu, J., Wooters, W.K.: Phys. Rev. A 61(5), 052306 (2000)

    Article  ADS  Google Scholar 

  14. Glaser, U., Buttner, H., Fehske, H.: Phys. Rev. A 68, 032318–326 (2003)

    Article  ADS  Google Scholar 

  15. Ventura, D., Martinez, T.: Inf. Sci. 124, 273–296 (2000)

    Article  Google Scholar 

  16. Grover, L.K.: Phys. Rev. Lett. 79, 4709 (1997)

    Article  ADS  Google Scholar 

  17. Grover, L.K.: Phys. Rev. Lett. 80, 1329 (1998)

    Article  Google Scholar 

  18. Ezkov, A., Nifanava, A., Ventura, D.: Inf. Sci. 128, 271–293 (2000)

    Article  Google Scholar 

  19. Tchapet Njafa, J.P., Nara Engo, S.G., Woafo, Paul: Neural Network and Physical Systems with Emergent Collective Computational Abilities. Int. Journ. Theor. Phys. 52(6), 1787–1801 (2013)

    Article  Google Scholar 

  20. Hopfield, J.J.: Proc. National Acad. Science, USA 79, 2554 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  21. Singh, M.P., Rajput, B.S.: Int. Journ. Theor. Phys. 52, 4237–4255 (2013)

    Article  Google Scholar 

  22. Singh, M.P., Rajput, B.S.: Euro. Phys. J. Plus 129(57), 1–13 (2014)

    Google Scholar 

  23. Singh, M. P., Rajput, B.S.: Int. Journ. Theor. Phys. 53(9), 3226–3238 (2014)

    Article  Google Scholar 

  24. Singh, M.P., Rajput, B.S.: Int. Journ. Theor. Phys. 54(10), 3443 (2015)

    Article  Google Scholar 

  25. Singh, M.P., Rajput, B.S.: Int. Journ. Theor. Phys. 55(7), 3207–3219 (2016)

    Article  MathSciNet  Google Scholar 

  26. Milman, P., Mosseri, R.: Phys. Rev. Lett. 90, 230403 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  27. Ming, L.W., Tang, Z.L., Liao, C.J.: Phys. Rev. A 69, 064301–319 (2004)

    Article  ADS  Google Scholar 

  28. Singh, M.P., Rajput, B.S.: Journ. Mod. Phys. 6, 1908–1920 (2015)

    Article  ADS  Google Scholar 

  29. Hopfield, J.J.: Proc. National Acad. Science, USA 79, 2554 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  30. Kosko, B.: JEEE Transactions on Systems 18, 49 (1988)

    MathSciNet  Google Scholar 

  31. Pollack, J.B.: Artif. Intell. 46, 77 (1990)

    Article  Google Scholar 

  32. Howell, J.C., Yeazell, J.A., Ventura, D.: Phys. Rev. A 62

Download references

Acknowledgments

Author Manu Pratap Singh thankfully acknowledges the financial support of University Grants Commission (UGC), New Delhi (India) in the form of a major research project: MRP-Major-Comp-2013-39460.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balwant S. Rajput.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M.P., Rajput, B.S. New Maximally Entangled States for Pattern-Association Through Evolutionary Processes in a Two-Qubit System. Int J Theor Phys 56, 1274–1285 (2017). https://doi.org/10.1007/s10773-016-3269-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3269-3

Keywords

Navigation