Skip to main content
Log in

The Extended Bloch Representation of Entanglement and Measurement in Quantum Mechanics

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The quantum formalism can be completed by assuming that density operators also represent genuine states. An ‘extended Bloch representation’ (EBR) then results, in which not only the states but also the measurement-interactions can be described. Consequently, the Born rule can be obtained as an expression that quantifies the lack of knowledge about the measurement-interaction that is each time actualized, during a measurement. Entanglement can also be consistently described in the EBR, as it remains compatible with the principle according to which a composite entity exists only if its components also exist, and therefore are in well-defined states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Busch, P., Lahti, P.J., Mittelstaedt, P.: The Quantum Theory of Measurement. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  2. Schrœdinger, E.: Naturwissenschaftern 23, 807 (1935). English translation: Trimmer, J. D.: Proc. Am. Philos. Soc. 124, 323 (1980). Reprinted in: Wheeler, J. A., Zurek, W. H. (Eds.), Quantum Theory and Measurement. Princeton University Press, Princeton (1983)

    Article  ADS  Google Scholar 

  3. van Fraassen, B.C.: Quantum mechanics: an empiricist view. Oxford University Press, Oxford (1991)

  4. Aerts, D.: The description of joint quantum entities and the formulation of a paradox. Int. J. Theor. Phys. 39, 485–496 (2000)

    MATH  MathSciNet  Google Scholar 

  5. Hughston, L.P., Jozsa, R., Wootters, W.K.: A complete classification of quantum ensembles having a given density matrix. Phys. Lett. A 183, 14–18 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  6. Beretta, G.P.: The Hatsopoulos-Gyftopoulos resolution of the Schroedinger-Park paradox about the concept of “state” in quantum statistical mechanics. Modern Phys. Lett. A 21, 2799–2811 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  7. Beltrametti, E.G., Cassinelli, G.: The logic of quantum mechanics. Addison-Wesley, Reading (1981)

    MATH  Google Scholar 

  8. d’Espagnat, B.: Conceptual Foundations of Quantum Mechanics, 2nd Edn. Addison-Wesley, Reading (1976)

    Google Scholar 

  9. Schlosshauer, M.: Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys. 76, 1267–1305 (2005)

    Article  ADS  Google Scholar 

  10. Kastner, R.E.: The Transactional Interpretation of Quantum Mechanics: The Reality of Possibility. Cambridge University Press, New York (2013)

    MATH  Google Scholar 

  11. Aerts, D., Sassoli de Bianchi, M.: The unreasonable success of quantum probability I. Quantum measurements as uniform fluctuations. J. Math. Psychol. 67, 51–75 (2015a)

    Article  MATH  MathSciNet  Google Scholar 

  12. De Zela, F.: Gleason-type theorem for projective measurements, including qubits: The Born rule beyond quantum physics. Found. Phys. (2016). doi:10.1007/s10701-016-0020-0

  13. Hioe, F.T., Eberly, J.H.: N-level coherence vector and higher conservation laws in quantum optics and quantum mechanics. Phys. Rev. Lett. 47, 838–841 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  14. Kimura, G.: The Bloch vector for N-level systems. Phys. Lett. A 314, 339 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Aerts, D., Sassoli de Bianchi, M.: The extended Bloch representation of quantum mechanics and the hidden-measurement solution to the measurement problem. Ann. Phys. 351, 975–1025 (2014). Erratum: Ann. Phys. 366, 197–198 (2016)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Aerts, D., Sassoli de Bianchi, M.: Many-measurements or many-worlds? a dialogue. Found. Sci. 20, 399–427 (2015)

    Article  MathSciNet  Google Scholar 

  17. Aerts, D., Sassoli de Bianchi, M.: The extended Bloch representation of quantum mechanics. Explaining superposition, interference and entanglement (2015). arXiv:1504.04781[quant-ph]

  18. Gamel, O.: Entangled bloch spheres: Bloch matrix and Two-Qubit state space. Phys. Rev. A 93, 062320 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  19. Aerts, D., Sassoli de Bianchi, M. Aerts, D., De Ronde, C., Freytes, H., Giuntini, R (eds.): A Possible Solution to the Second Entanglement Paradox. World Scientific Publishing Company, Singapore (2016). in print)

  20. Aerts, D.: A mechanistic classical laboratory situation violating the Bell inequalities with \(2\sqrt {2}\), exactly ‘in the same way’ as its violations by the EPR experiments. Helv. Phys. Acta 64, 1–23 (1991)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro Sozzo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aerts, D., de Bianchi, M.S. & Sozzo, S. The Extended Bloch Representation of Entanglement and Measurement in Quantum Mechanics. Int J Theor Phys 56, 3727–3739 (2017). https://doi.org/10.1007/s10773-016-3257-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3257-7

Keywords

Navigation