Skip to main content
Log in

Kochen-Specker Theorem as a Precondition for Quantum Computing

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We study the relation between the Kochen-Specker theorem (the KS theorem) and quantum computing. The KS theorem rules out a realistic theory of the KS type. We consider the realistic theory of the KS type that the results of measurements are either +1 or −1. We discuss an inconsistency between the realistic theory of the KS type and the controllability of quantum computing. We have to give up the controllability if we accept the realistic theory of the KS type. We discuss an inconsistency between the realistic theory of the KS type and the observability of quantum computing. We discuss the inconsistency by using the double-slit experiment as the most basic experiment in quantum mechanics. This experiment can be for an easy detector to a Pauli observable. We cannot accept the realistic theory of the KS type to simulate the double-slit experiment in a significant specific case. The realistic theory of the KS type can not depicture quantum detector. In short, we have to give up both the observability and the controllability if we accept the realistic theory of the KS type. Therefore, the KS theorem is a precondition for quantum computing, i.e., the realistic theory of the KS type should be ruled out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955)

    MATH  Google Scholar 

  2. Feynman, R.P., Leighton, R.B., Sands, M.: Lectures on Physics, Volume III Quantum mechanics. Addison-Wesley Publishing Company (1965)

  3. Redhead, M.: Incompleteness, Nonlocality, and Realism, 2nd edn. Clarendon Press, Oxford (1989)

    MATH  Google Scholar 

  4. Peres, A.: Quantum Theory: Concepts and Methods. Kluwer Academic, Dordrecht (1993)

    MATH  Google Scholar 

  5. Sakurai, J.J.: Modern Quantum Mechanics. Addison-Wesley Publishing Company (1995). Revised ed

  6. Nielsen, M.A., Chuang, I.L: Quantum Computation and Quantum Information. Cambridge University Press (2000)

  7. Einstein, A., Podolsky, B., Rosen, N.: Phys. Rev. 47, 777 (1935)

    Article  ADS  Google Scholar 

  8. Bell, J.S.: Physics 1, 195 (1964)

    Google Scholar 

  9. Kochen, S., Specker, E.P.: J. Math. Mech. 17, 59 (1967)

    MathSciNet  Google Scholar 

  10. Leggett, A.J.: Found. Phys. 33, 1469 (2003)

    Article  MathSciNet  Google Scholar 

  11. Gröblacher, S., Paterek, T., Kaltenbaek, R., Brukner, Č., Żukowski, M., Aspelmeyer, M., Zeilinger, A.: Nature (London) 446, 871 (2007)

    Article  ADS  Google Scholar 

  12. Paterek, T., Fedrizzi, A., Gröblacher, S., Jennewein, T., Żukowski, M., Aspelmeyer, M., Zeilinger, A.: Phys. Rev. Lett. 99, 210406 (2007)

    Article  ADS  Google Scholar 

  13. Branciard, C., Ling, A., Gisin, N., Kurtsiefer, C., Lamas-Linares, A., Scarani, V.: Phys. Rev. Lett. 99, 210407 (2007)

    Article  ADS  Google Scholar 

  14. Suarez, A.: Found. Phys. 38, 583 (2008)

    Article  ADS  Google Scholar 

  15. żukowski, M.: Found. Phys. 38, 1070 (2008)

    Article  ADS  Google Scholar 

  16. Suarez, A.: Found. Phys. 39, 156 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  17. Deutsch, D.: Proc. Roy. Soc. London Ser. A 400, 97 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  18. Jones, J.A., Mosca, M.: J. Chem. Phys. 109, 1648 (1998)

    Article  ADS  Google Scholar 

  19. Gulde, S., Riebe, M., Lancaster, G.P.T., Becher, C., Eschner, J., Häffner, H., Schmidt-Kaler, F., Chuang, I.L., Blatt, R.: Nature (London) 421, 48 (2003)

    Article  ADS  Google Scholar 

  20. de Oliveira, A.N, Walborn, S.P., Monken, C.H.: J. Opt. B: Quantum Semiclass. Opt 7, 288–292 (2005)

    Article  ADS  Google Scholar 

  21. Kim, Y.-H.: Phys. Rev. A 67, 040301(R) (2003)

    Article  ADS  Google Scholar 

  22. Mohseni, M., Lundeen, J.S., Resch, K.J., Steinberg, A.M.: Phys. Rev. Lett. 91, 187903 (2003)

    Article  ADS  Google Scholar 

  23. Tame, M.S., Prevedel, R., Paternostro, M., Böhi, P., Kim, M.S., Zeilinger, A.: Phys. Rev. Lett. 98, 140501 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  24. Bernstein, E., Vazirani, U.: Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing (STOC ’93), pp. 11–20. doi:10.1145/167088.167097 (1993)

  25. Bernstein, E., Vazirani, U.: SIAM J. Comput. 26–5, 1411–1473 (1997)

    Article  MathSciNet  Google Scholar 

  26. Simon, D.R.: In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 116–123, retrieved 2011-06-06 (1994)

  27. Du, J., Shi, M., Zhou, X., Fan, Y., Ye, B.J., Han, R., Wu, J.: Phys. Rev. A 64, 042306 (2001)

    Article  ADS  Google Scholar 

  28. Brainis, E., Lamoureux, L.-P., Cerf, N.J., Emplit, Ph., Haelterman, M., Massar, S.: Phys. Rev. Lett. 90, 157902 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  29. Li, H., Yang, L.: Quantum Inf. Process 14, 1787 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  30. Nagata, K., Nakamura, T.: Quantum Inf. Process 12, 3785 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  31. Nagata, K., Nakamura, T.: Int. J. Theor. Phys. 48, 3287 (2009)

    Article  MathSciNet  Google Scholar 

  32. Nagata, K., Nakamura, T.: Physica Scripta 88, 015007 (2013)

    Article  ADS  Google Scholar 

  33. Nagata, K.: Eur. Phys. J. D 56, 441 (2010)

    Article  ADS  Google Scholar 

  34. Schon, C., Beige, A.: Phys. Rev. A 64, 023806 (2001)

    Article  ADS  Google Scholar 

  35. Nagata, K., Nakamura, T.: Phys. J. 1(3), 183 (2015)

    Google Scholar 

Download references

Acknowledgments

We thank Professor Weinstein for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Nagata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagata, K., Nakamura, T. Kochen-Specker Theorem as a Precondition for Quantum Computing. Int J Theor Phys 55, 5193–5201 (2016). https://doi.org/10.1007/s10773-016-3140-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3140-6

Keywords

Navigation