Skip to main content
Log in

Photonic Four-qubit Entangled Decoherence-free States Assisted by Cavity-QED System

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We propose an efficient preparation of photonic four-qubit entangled decoherence-free states assisted by the cavity-QED system. By using the optical selection rule derived by a single electron charged self-assembled GaAs/InAs quantum dot in a micropillar resonator, two photons are used to generate four-qubit entangled decoherence-free states. Compared with previous entanglement based photonic protocols, the present one requires single-photon resources and is deterministic. These states may be applied to long-distance communications because only two photons are transmitted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bennett, C. H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W. K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bouwmeester, D., Pan, J. -W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  Google Scholar 

  3. Inoue, K., Santori, C., Waks, E., Yamamoto, Y.: Entanglement-based quantum key distribution without an entangled-photon source. Phys. Rev. A 67, 062319 (2003)

    Article  ADS  Google Scholar 

  4. Cao, Y., Liang, H., Yin, J., Yong, H. -L., Zhou, F., Wu, Y. -P., Ren, J. -G., Li, Y. -H., Pan, G. -S., Yang, T., Ma, X., Peng, C. -Z., Pan, J. -W.: Entanglement-based quantum key distribution with biased basis choice via free space. Opt. Express 21, 27260–27268 (2013)

    Article  ADS  Google Scholar 

  5. Zhong, T., Zhou, H., Horansky, R., Lee, C., Verma, V., Lita, A., Restelli, A., Bienfang, J., Mirin, R. P., Gerrits, T.: Photon-efficient quantum key distribution using time-energy entanglement with high-dimensional encoding. New, J. Phys. 17, 022002 (2015)

    Article  ADS  Google Scholar 

  6. Bennett, C. H., Wiesner, S. J.: Communication via one- and two-particle operators on Einstein- Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bennett, C. H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Barreiro, J. T., Wei, T. -C., Kwiat, P. G.: Beating the channel capacity limit for linear photonic superdense coding. Nature Phys 4, 282–286 (2008)

    Article  Google Scholar 

  9. Grover, L. K.: Quantum mechanics helps in searching for a needle in a haystack. Rev. Phys. Lett. 79, 325–328 (1997)

    Article  Google Scholar 

  10. Broadbent, A., Fitzsimons, J., Kashe, E.: Universal blind quantum computation. In: Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp 517–526 (2009)

  11. Barz, S., Fitzsimons, J. F., Kashefi, E., Walther, P.: Experimental verification of quantum computation. Nat. Phys. 9, 727–731 (2013)

    Article  Google Scholar 

  12. Nielsen, M. A., Chuang, I. L.: Quantum computation and quantum information cambridge university press (2000)

  13. Bennett, C. H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J. A., Wootters, W. K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)

    Article  ADS  Google Scholar 

  14. Pan, J. W., Simon, C., Brukner, C., Zeilinger, A.: Entanglement purification for quantum communication. Nature 410, 1067–1070 (2001)

    Article  ADS  Google Scholar 

  15. Bennett, C. H., Bernstein, H. J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046–2052 (1996)

    Article  ADS  Google Scholar 

  16. Luo, M. -X., Chen, X. -B., Yang, Y. -X., Qu, Z. -G., Wang, X.: Hyperentanglement concentration for n-photon 2n-qubit systems with linear optics. J. Opt. Soc. Am. B 31, 67–74 (2014)

    Article  ADS  Google Scholar 

  17. Lidar, D., Brun, T.: Quantum error correction cambridge university press (2013)

  18. Palma, G. M., Suominen, K. -A., Ekert, A. K.: Quantum computers and dissipation. Proc. R. Soc. London, Ser. A 452, 567–584 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Duan, L., Guo, G. -C.: Preserving coherence in quantum computation by pairing quantum bits. Phys. Rev. Lett. 79, 1953–1956 (1997)

    Article  ADS  Google Scholar 

  20. Zanardi, P., Rasetti, M.: Noiseless quantum codes. Phys. Rev. Lett 79, 3306–3309 (1997)

    Article  ADS  Google Scholar 

  21. Lidar, D. A., Bacon, D., Whaley, K. B.: Concatenating decoherence-free subspaces with quantum error correcting codes. Phys. Rev. Lett. 82, 4556–4559 (1999)

    Article  ADS  Google Scholar 

  22. Kempe, J., Bacon, D., Lidar, D. A., Whaley, K. B.: Theory of decoherence-free fault-tolerant universal quantum computation. Phys. Rev. A 63, 042307 (2001)

    Article  ADS  Google Scholar 

  23. Bourennane, M., Eibl, M., Gaertner, S., Kurtsiefer, C., Cabello, A., Weinfurter, H.: Decoherencefree quantum information processing with four-photon entangled states. Phys. Rev. Lett. 92, 107901 (2004)

    Article  ADS  Google Scholar 

  24. Zou, X. B., Shu, J., Guo, G. C.: Simple scheme for generating four-photon polarizationentangled decoherence-free states using spontaneous parametric down-conversions. Phys. Rev. A 73, 054301 (2006)

    Article  ADS  Google Scholar 

  25. Gong, Y. X., Zou, X. B., Niu, X. L., Li, J., Huang, Y. F., Guo, G. C.: Generation of arbitrary four-photon polarization-entangled decoherence-free states. Phys. Rev. A 77, 042317 (2008)

    Article  ADS  Google Scholar 

  26. Zhou, Y. -S., Li, X., Deng, Y., Li, H. -R., Luo, M. -X.: Generation of hybrid four-qubit entangled decoherence-free states assisted by the cavity-QED system. Opt. Commun. 366, 397–403 (2016)

    Article  ADS  Google Scholar 

  27. Bishop, C. A., Byrd, M. S.: Methods for producing decoherence-free states and noiseless subsystems using photonic qutrits. Phys. Rev. A 77, 012314 (2008)

    Article  ADS  Google Scholar 

  28. Noguchi, A., Haze, S., Toyoda, K., Urabe, S.: Generation of a Decoherence-Free Entangled State Using a Radio-Frequency Dressed State. Phys. Rev. Lett. 108, 060503 (2012)

    Article  ADS  Google Scholar 

  29. Wang, H. -F., Zhang, S., Zhu, A. -D., Yi, X. X., Yeon, K. -H.: Local conversion of four Einstein- Podolsky-Rosen photon pairs into four-photon polarization-entangled decoherence-free states with non-photon-number-resolving detectors. Opt. Express 19, 25433–25440 (2011)

    Article  ADS  Google Scholar 

  30. Wallraff, A., Schuster, D. I., Blais, A., Frunzio, L., Huang, R. - S., Majer, J., Kumar, S., Girvin, S. M., Schoelkopf, R. J.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004)

    Article  ADS  Google Scholar 

  31. Ansmann, M., Wang, H., Bialczak, R. C., Hofheinz, M., Lucero, E., Neeley, M., O’Connell, A. D., Sank, D., Weides, M., Wenner, J., Cleland, A. N., Martinis, J. M.: Violation of Bell's inequality in Josephson phase qubits. Nature 461, 504–506 (2009)

    Article  ADS  Google Scholar 

  32. Duan, L. -M., Kimble, H. J.: Scalable Photonic Quantum Computation through Cavity-Assisted Interactions. Phys. Rev. Lett. 92, 127902 (2004)

    Article  ADS  Google Scholar 

  33. Stoltz, N. G., Rakher, M., Strauf, S., Badolato, A., Lofgreen, D. D., Petroff, P. M., Coldren, L. A., Bouwmeester, D.: High-quality factor optical microcavities using oxide apertured micropillars. Appl. Phys. Lett. 87, 031105 (2005)

    Article  ADS  Google Scholar 

  34. Reitzenstein, S., Hofmann, C., Gorbunov, A., Strauss, M., Kwon, S. H., Schneider, C., Loffler, A., Hofling, S., Kamp, M., Forchel, A.: AlAs/GaAs micropillar cavities with quality factors exceeding 150.000. Appl. Phys. Lett. 90, 251109 (2007)

    Article  ADS  Google Scholar 

  35. Bonato, C., Haupt, F., Oemrawsingh, S. S. R., Gudat, J., Ding, D., van Exter, M. P., Bouwmeester, D.: CNOT and Bell-state analysis in the weak-coupling cavity QED regime. Phys. Rev. Lett. 104, 160503 (2010)

    Article  ADS  Google Scholar 

  36. Wei, H. R., Deng, F. G.: Universal quantum gates on electron-spin qubits with quantum dots inside single-side optical microcavities. Opt. Express 22, 593–607 (2014)

    Article  ADS  Google Scholar 

  37. Walls, D. F., Milburn, G. J.: Quantum Optics. Springer-Verlag, Berlin (2008)

    Book  MATH  Google Scholar 

  38. Luo, M. -X., Wang, X.: Parallel photonic quantum computation assisted by quantum dots in one-side optical microcavities. Sci. Rep. 4, 5732 (2014)

    ADS  Google Scholar 

  39. Hu, C. Y., Young, A., O’Brien, J. L., Munro, W. J., Rarity, J. G.: Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon. Phys. Rev. B 78, 085307 (2008)

    Article  ADS  Google Scholar 

  40. Hu, C. Y., Munro, W. J., Rarity, J.: Deterministic photon entangler using a charged quantum dot inside a microcavity. Phys. Rev. B 78, 125318 (2008)

    Article  ADS  Google Scholar 

  41. Ren, B. C., Wei, H. R., Deng, F. G.: Deterministic photonic spatial-polarization hyper-controllednot gate assisted by a quantum dot inside a one-side optical microcavity. Laser Phys. Lett. 10, 095202 (2013)

    Article  ADS  Google Scholar 

  42. Luo, M. -X., Li, H. -R., Lai, H., Wang, X.: Quantum computation based on photons with three degrees of freedom. Sci. Rep. 6, 25977 (2016)

    Article  ADS  Google Scholar 

  43. Reiserer, A., Ritter, S., Rempe, G.: Nondestructive detection of an optical photon. Science 342, 1349–1351 (2013)

    Article  ADS  Google Scholar 

  44. Knill, E., Laflamme, R., Milburn, G. J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)

    Article  ADS  MATH  Google Scholar 

  45. Nemoto, K., Munro, W. J.: Nearly deterministic linear optical controlled-not gate. Phys. Rev. Lett. 93, 250502 (2004)

    Article  ADS  Google Scholar 

  46. Lin, Q., Li, J.: Quantum control gates with weak cross-Kerr nonlinearity. Phys. Rev. A 79, 022301 (2009)

    Article  ADS  Google Scholar 

  47. Beenakker, C. W. J., DiVincenzo, D. P., Emary, C., Kindermann, M.: Charge detection enables free-electron quantum computation. Phys. Rev. Lett. 93, 020501 (2004)

    Article  ADS  Google Scholar 

  48. Shende, V. V., Bullock, S. S., Markov, I. L.: Synthesis of quantum logic circuits. IEEE Trans. Comput. Aided Des. 25, 1000–1010 (2006)

    Article  Google Scholar 

  49. Hu, C. Y., Rarity, J. G.: Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity. Phys. Rev. B 83, 115303 (2011)

    Article  ADS  Google Scholar 

  50. Luo, M. -X., Li, H. -R., Lai, H., Wang, X.: Teleportation of a ququart system using hyperentangled photons assisted by atomic-ensemble memories. Phys. Rev. A 93, 012332 (2016)

    Article  ADS  Google Scholar 

  51. Reithmaier, J. P., S φk, G., Lüffler, A., hofmann, C., Kuhn, S., Reitzenstein, S., Keldysh, L. V., Kulakovskii, V. D., Reinecke, T. L., Forchel, A.: Strong coupling in a single quantum dot-semiconductor microcavity system. Nature 432, 197–200 (2004)

  52. Yoshie, T., Scherer, A., Hendrickson, J., Khitrova, G., Gibbs, H. M., Rupper, G., Ell, C., Shchekin, O. B., Deppe, D. G.: Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004)

    Article  ADS  Google Scholar 

  53. Petta, J. R., Johnson, A. C., Taylor, J. M., Laird, E. A., Yacoby, A., Lukin, M. D., Marcus, C. M., Hanson, M. P., Gossard, A. C.: Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005)

    Article  ADS  Google Scholar 

  54. Berezovsky, J., Mikkelsen, M. H., Stoltz, N. G., Coldren, L. A., Awschalom, D. D.: Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320, 349–352 (2008)

    Article  ADS  Google Scholar 

  55. Reilly, D., Taylor, J. M., Petta3, J. R., Marcus, C. M., Hanson, M. P., Gossard, A. C.: Suppressing spin qubit dephasing by nuclear state preparation. Science 321, 817–821 (2008)

  56. Kawakami, E., Scarlino, P., Ward, D. R., Braakman, F. R., Savage, D. E., Lagally, M. G., Friesen, M., Coppersmith, S. N., Eriksson, M. A., Vandersypen, L. M. K.: Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot. Nature Nanotech 9, 666–670 (2014)

    Article  ADS  Google Scholar 

  57. Langbein, W., Borri, P., Woggon, U., Stavarache, V., Reuter, D., Wieck, A. D.: Radiatively limited dephasing in InAs quantum dots. Phys. Rev. B 70, 033301 (2004)

    Article  ADS  Google Scholar 

  58. Reiserer, A., Kalb, N., Rempe, G., Ritter, S.: A quantum gate between a flying optical photon and a single trapped atom. Nature 508, 237–240 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China(No.11547196) and Key projects of Sichuan Provincial Department of Education(No.15ZA0224), the Project of Zigong science and Technology Bureau (No. 2014DZ08), The Sichuan wisdom tourism base planning project (No. ZHZ14-01) and Sichuan Key Laboratory of artificial intelligence (No. 2014RYJ01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C. Photonic Four-qubit Entangled Decoherence-free States Assisted by Cavity-QED System. Int J Theor Phys 55, 4841–4851 (2016). https://doi.org/10.1007/s10773-016-3108-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3108-6

Keywords

Navigation