Skip to main content

Advertisement

Log in

Modeling the Electron Transport in Nanostructures by Using the Concept of BIons in M-theory

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, using the similarity between quantum tunnels in nanostructures and BIon in M-theory, we propose a new model which considers the process of formation of superconductors in nanostructures. We show that by decreasing the size of nanostructures, emitted photons by electrons connect to each other and form a wormhole-like tunnel. This tunnel is a channel for transporting electron inside the nanostructure. If different wormhole-like tunnels join to each other, one big tunnel is constructed that can be an origin for superconductivity in matter. The superconductor order parameter depends on the size of nanostructure and temperature. Increasing temperature, it is shown that the model matches with quantum theory prescriptions. Also, by applying external electromagnetism, external photons interact with exchanging photons between electrons, exchanging photons deviate from original route and the formation of wormhole-like tunnels inside a nanostructure is prevented. Finally, it is shown that the origin of electrodynamics and gravity are the same and thus, the phrase of wormhole can be applied for appeared tunnels in nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kibis, O. V.: Rev. Phys. Lett. 107, 106802 (2011)

    Article  Google Scholar 

  2. Kibis, O. V., Sigurdsson, H., Shelykh, I. A.: Phys. Rev. B 91, 235308 (2015)

    Article  ADS  Google Scholar 

  3. vega Monroy, R., Martinez Castro, O., Salazar cohen, G.: Phys. Lett. A 379, 1169 (2015)

    Article  ADS  Google Scholar 

  4. Arnold, T., Tang, C.-S., Manolescu, A., Gudmundsson, V.: Phys. E 60, 1 (2014)

    Article  Google Scholar 

  5. Iurov, A., Gumbs, G., Roslyak, O., Huang, D.: J. Phys. Condens. Matter 25, 135502 (2013)

    Article  ADS  Google Scholar 

  6. Pincak, R., Smotlacha, J.: Eur. Phys. J. B 86, 480 (2013)

    Article  ADS  Google Scholar 

  7. Sepehri, A.: Phys. Lett. B 748, 328335 (2015)

    Article  Google Scholar 

  8. Sepehri, A., et al.: Phys. Lett. B 747, 1 (2015)

    Article  ADS  Google Scholar 

  9. Grignani, G., Harmark, T., Marini, V., Obers, N. A., Orselli, M.: Nucl. Phys. B 851, 462 (2011)

    Article  ADS  Google Scholar 

  10. Grignani, G., Harmark, T., Marini, A., Obers, N. A., Orselli, M.: JHEP 1106, 058 (2011)

    Article  ADS  Google Scholar 

  11. Sepehri, A., Rahaman, F., Pradhan, A., Sardar, I. H.: Phys. Lett. B 741, 92 (2014)

    Article  Google Scholar 

  12. Sepehri, A.: Phys. Lett. A 380, 1401 (2016). doi:10.1016/j.physleta.2016.02.026

    Article  ADS  MathSciNet  Google Scholar 

  13. Sepehri, A., Rahaman, F., Capozziello, S., Ali, A. F., Pradhan, A.: Eur. Phys. J. C 76(5), 231 (2016)

    Article  ADS  Google Scholar 

  14. Sepehri, A., Rahaman, F., Capozziello, S., Ali, A. F., Pradhan, A.: arXiv:hep-th/1603.00350[hep-th]

  15. Sepehri, A., Ali, A. F.: arXiv:hep-th/1602.06210[hep-th]

  16. Sepehri, A.: Mod. Phys. Lett. A 380, 2247 (2016). doi:10.1016/j.physleta.2016.05.015

    Article  MathSciNet  Google Scholar 

  17. Kane, C. L., Mele, E. J.: Phys. Rev. Lett. 95, 226801 (2005)

    Article  ADS  Google Scholar 

  18. Ando, T.: J. Phys. Soc. Jpn. 69, 1757 (2000)

    Article  ADS  Google Scholar 

  19. Pichugin, K. N., Pudlak, M., Nazmitdinov, R.G.: Eur. Phys. J. B 87, 124 (2014)

    Article  ADS  Google Scholar 

  20. Sepehri, A., Capozziello, S., Setare, M. R.: Gen. Rel. Grav. 48(4), 53 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  21. Sepehri, A., et al.: . In: proceeding; A. Sepehri, accepted in modern physics letters A. arXiv:hep-th/1510.07961[physics.gen-ph], doi:10.1142/S0217732316500048 10.1142/S0217732316500048

  22. Capozziello, S., De Laurentis, M.: Phys. Rept. 509, 167 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  23. Hendi, S. H., Dehghani, A.: Phys. Rev. D 91, 064045 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  24. Bergeret, F. S., Levy Yeyati, A.: Phys. Rev. B 80, 174508 (2009)

    Article  ADS  Google Scholar 

  25. Mayoh, J., Garcia-Garcia, A. M.: Phys. Rev. B 90, 014509 (2014)

    Article  ADS  Google Scholar 

  26. Mihlin, A., Auerbach, A.: Phys. Rev. B 80, 134521 (2009)

    Article  ADS  Google Scholar 

  27. Bagger, J., Lambert, N.: Phys. Rev. D 77, 065008 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  28. Gustavsson, A.: Nucl. Phys. B 811, 66 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  29. Ho, P.-M., Matsuo, Y.: JHEP 0806, 105 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  30. Mukhi, S.: Constantinos papageorgakis. JHEP 0805, 085 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  31. San-Jose, P., Gonzalez, J., Guinea, F.: Phys. Rev. Lett. 106, 045502 (2011)

    Article  ADS  Google Scholar 

  32. Kuemmeth, F., Ilani, S., Ralph, D. C., McEuen, P. L.: Nature 452, 448 (2008)

    Article  ADS  Google Scholar 

  33. De Martino, A., Egger, R., Hallberg, K., Balseiro, C. A.: Phys. Rev. Lett. 88, 206402 (2002)

    Article  ADS  Google Scholar 

  34. Lopez-Sancho, M. P., Munoz, M. C.: Phys. Rev. B 83, 075406 (2011)

    Article  ADS  Google Scholar 

  35. Bellucci, S., Saharian, A. A., Bardeghyan, V. M.: Phys. Rev. D 82, 065011 (2010)

    Article  ADS  Google Scholar 

  36. Rogatko, M., Szyplowska, A.: Phys. Rev. D 79, 104005 (2009)

    Article  ADS  Google Scholar 

  37. Atanasov, V., Saxena, A.: Phys, J. Condens. Matter 23, 175301 (2011)

    Article  ADS  Google Scholar 

  38. Joglekar, Y. N., Saxena, A.: Phys. Rev. B 80, 153405 (2009)

    Article  ADS  Google Scholar 

  39. Dandoloff, R., Saxena, A., Jensen, B.: Phys. Rev. A 81, 014102 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Alireza Sepehri would like to thank the Research Institute for Nano, Iran for financial support during investigation in this work. He also would like to thank Professor Ali Mohammad for his lecture that gives us new insight in BIon. The work was partly supported by VEGA Grant No. 2/0009/16. R. Pincak would like to thank the TH division in CERN for hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Pincak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sepehri, A., Pincak, R. Modeling the Electron Transport in Nanostructures by Using the Concept of BIons in M-theory. Int J Theor Phys 55, 4577–4594 (2016). https://doi.org/10.1007/s10773-016-3080-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3080-1

Keywords

Navigation