Skip to main content
Log in

Authenticated Quantum Key Distribution with Collective Detection using Single Photons

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We present two authenticated quantum key distribution (AQKD) protocols by utilizing the idea of collective (eavesdropping) detection. One is a two-party AQKD protocol, the other is a multiparty AQKD protocol with star network topology. In these protocols, the classical channels need not be assumed to be authenticated and the single photons are used as the quantum information carriers. To achieve mutual identity authentication and establish a random key in each of the proposed protocols, only one participant should be capable of preparing and measuring single photons, and the main quantum ability that the rest of the participants should have is just performing certain unitary operations. Security analysis shows that these protocols are free from various kinds of attacks, especially the impersonation attack and the man-in-the-middle (MITM) attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bennet, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. IEEE, New York (1984)

  2. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Deng, F.G., Long, G.L.: Bidirectional quantum key distribution protocol with practical faint pulses. Phys. Rev. A 70, 012311 (2004)

    Article  ADS  Google Scholar 

  4. Wen, K., Long, G.L.: Modified Bennett-Brassard 1984 quantum key distribution protocol with two-way classical communications. Phys. Rev. A 72, 022336 (2005)

    Article  ADS  Google Scholar 

  5. Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)

    Article  ADS  Google Scholar 

  6. Lin, S., Guo, G.D., et al.: Quantum key distribution: Defeating collective noise without reducing efficiency. Quantum. Inf. Comput 14, 845–856 (2014)

    MathSciNet  Google Scholar 

  7. Sun, Y., Wen, Q.Y., Gao, F., Zhu, F.C.: Robust variations of the Bennett-Brassard 1984 protocol against collective noise. Phys. Rev. A 80, 032321 (2009)

    Article  ADS  Google Scholar 

  8. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351, 23 (2006)

    Article  ADS  MATH  Google Scholar 

  9. Gao, F., Wen, Q.Y., Qin, S.J., et al.: Quantum asymmetric cryptography with symmetric keys. Sci China Ser. G-Phys Mech. Astron 52, 1925–1931 (2009)

    Article  ADS  Google Scholar 

  10. Li, Y.B.: Analysis of counterfactual quantum key distribution using error correcting theory. Quantum Inf. Process 13, 2325–2342 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Tan, Y.G., Cai, Q.Y.: Practical decoy state quantum key distribution with finite resource. Eur. Phys. J. D 56, 449–455 (2010)

    Article  ADS  Google Scholar 

  12. Wang, X.B.: Decoy-state quantum key distribution with large random errors of light intensity. Phys. Rev. A 75, 052301 (2007)

    Article  ADS  Google Scholar 

  13. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  14. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: On the information-splitting essence of two types of quantum key distribution protocols. Phys. Lett. A 355, 172 (2006)

    Article  ADS  MATH  Google Scholar 

  15. Zhao, L.Y., Li, H.W., Yin, Z.Q., Chen, W., You, J., Han, Z.F.: Security of biased BB84 quantum key distribution with finite resource. Chin. Phys. B. 23, 100304 (2014)

    Article  ADS  Google Scholar 

  16. Huang, P., Fan, J., Zeng, G.H.: State-discrimination attack on discretely modulated continuous-variable quantum key distribution. Phys. Rev. A. 89, 044230 (2014)

    Google Scholar 

  17. Song, T.T., Wen, Q.Y., Guo, F.Z., Tan, X.Q.: Finite-key analysis for measurement-device independent quantum key distribution. Phys. Rev. A 86, 022332 (2012)

    Article  ADS  Google Scholar 

  18. Song, T.T., Zhang, J., Qin, S.J., et al.: Finite-key anaylysis for quantum key distribution with decoy states. Quant. Inf. Comput 11, 0374–0389 (2011)

    MathSciNet  Google Scholar 

  19. Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008)

    Article  ADS  Google Scholar 

  20. Long, G.L., Liu, X.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  21. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  22. Gu, B., Zhang, C.Y., Cheng, G.S., Huang, Y.G.: Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel. Sci. China Ser. G-Phys. Mech. Astron 54, 942–947 (2011)

    Article  ADS  Google Scholar 

  23. Long, G.L., Deng, F.G., Wang, C., et al.: Quantum secure direct communication and deterministic secure quantum communication. Front Phys. China 2, 251 (2007)

    Article  ADS  Google Scholar 

  24. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  25. Wang, C., Deng, F.G., Long, G.L.: Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state. Opt. Commun 253, 15–20 (2005)

    Article  ADS  Google Scholar 

  26. Lin, S., Wen, Q.Y, Zhu, F.C.: Quantum secure direct communication with χ-type entangled states. Phys. Rev. A 78, 064304 (2008)

    Article  ADS  Google Scholar 

  27. Yan, F.L., Zhang, X.Q.: A scheme for secure direct communication using EPR pairs and teleportation. Eur. Phys. J. B 41, 75–78 (2004)

    Article  ADS  Google Scholar 

  28. Huang, W., Wen, Q.Y., Jia, H.Y., Qin, S.J., Gao, F.: Fault tolerant quantum secure direct communication with quantum encryption against collective noise. Chin. Phys. B 21, 100308 (2012)

    Article  ADS  Google Scholar 

  29. Li, X.H.: Quantum secure direct communication. Acta Phys. Sin. 64, 160307 (2015)

    Google Scholar 

  30. Yuan, H., Zhou, J., Zhang, G., Wei, X.F.: Two-Step Efficient deterministic secure quantum communication using three-qubit W state. Commun. Theor. Phys 55, 984–988 (2011)

    Article  ADS  MATH  Google Scholar 

  31. Yuan, H, Song, J., Zhou, J., Zhang, G., Wei, X.F.: High-capacity deterministic secure four-qubit W state protocol for quantum communication based on order rearrangement of particle pairs. Quant. Inf. Process 50, 2403–2409 (2011)

    MathSciNet  MATH  Google Scholar 

  32. Man, Z.X., Zhang, Z.J., Li, Y.: Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations. Chin. Phys. Lett 22, 18–21 (2005)

    Article  ADS  Google Scholar 

  33. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett 83, 648–651 (1999)

    Article  ADS  Google Scholar 

  34. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  35. Zhang, Z.J., Li, Y., Man, Z.X.: Multiparty quantum secret sharing. Phys. Rev. A 71, 044301 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Security of quantum secret sharing with two-particle entanglement against individual attacks. Quant. Inf. Comput 9, 0765–0772 (2009)

    MathSciNet  MATH  Google Scholar 

  37. Yang, Y.G., Chai, H.P., Wang, Y., et al.: Fault tolerant quantum secret sharing against collective-amplitude-damping noise. Sci. China Ser. G-Phys. Mech. Astron 54, 1619–1624 (2011)

    Article  ADS  Google Scholar 

  38. Wang, T.Y., Wen, Q.Y.: Security of a kind of quantum secret sharing with single photons. Quant. Inf. Comput 11, 0434–0443 (2011)

    MathSciNet  Google Scholar 

  39. Tsai, C.W., Hwang, T.: Multi-party quantum secret sharing based on two special entangled states. Sci. China Ser. G-Phys. Mech. Astron 55, 460–464 (2012)

    Article  ADS  Google Scholar 

  40. Yang, Y.G., Teng, Y.W., et al.: Verifiable Quantum (k,n)-threshold Secret Key Sharing. Int. J Theor. Phys 50, 792–798 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Shi, R.H., Huang, L.S., Yang, W., et al.: Asymmetric multi-party quantum state sharing of an arbitrary m-qubit state. Quant. Inf. Process 10, 53–61 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum privte queries. Phys. Rev. Lett. 100, 230502 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Gao, F., Liu, B., Wen, Q.Y., Chen, H.: Flexible quantum private queries based on quantum key distribution. Opt. Express 20, 17411 (2012)

    Article  ADS  Google Scholar 

  44. Zuo, H.J.: Cryptanalysis of quantum blind signature scheme. Int. J quant. inf. 52, 322–329 (2013)

    MathSciNet  MATH  Google Scholar 

  45. Jiang, L., He, G.Q., Nie, D., Xiong, J., Zeng, G.H.: Qautnum anonymous voting for continuous variables. Phys. Rev. A 85, 042309 (2012)

    Article  ADS  Google Scholar 

  46. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J Phys. A-Math. Theor. 42, 055305 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Liu, W., Wang, Y.B., Jiang, Z.T., et al.: A Protocol for the Quantum Private Comparison of Equality with χ-Type State. Int. J Theor. Phys 51, 69–77 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  48. Chen, X.B., Xu, G., Niu, X.X., et al.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun 283, 1161–1165 (2009)

    Google Scholar 

  49. Li, Y.B., Wen, Q.Y., Gao, F., Jia, H.Y., Sun, Y.: Information leak in Liu et al.’s quantum private comparison and a new protocol. Eur. Phys. J. D 66, 110–115 (2012)

    Article  ADS  Google Scholar 

  50. Zuo, H.J., Zhang, K.J., Song, T.T.: Security analysis of quantum multi-signature protocol based on teleportation. Quantum Inf. Process 12, 2343–2353 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Yang, Y.G., Xia, J., Jia, X., et al.: Comment on quantum private comparison protocols with a semi-honest third party. Quantum Inf. Process 12, 877–885 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Huang, W., Wen, Q.Y., Liu, B., et al.: Quantum anonymous ranking. Phys. Rev. A 89, 032325 (2014)

    Article  ADS  Google Scholar 

  53. Wang, Q.L., Zhang, W.W., Su, Q.: Revisiting the loophole of the improved secure quantum sealed-bid auction with post-confirmation and solution. Int. J. Theor. Phys 53, 3147–3153 (2104)

    Article  MATH  Google Scholar 

  54. Wen, X.J., Tian, Y., Ji, L.P., Niu, X.M.: A group signature scheme based on quantum teleportation. Phys. Scr. 81, 055001 (2010)

    Article  ADS  MATH  Google Scholar 

  55. Li, Y.B., Qin, S.J., Yuan, Z., Huang, W., Sun, Y.: Quantum private comparison against decoherence noise. Quantum Inf. Process 12, 2191–2205 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65, 042312 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  57. Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84, 022344 (2011)

    Article  ADS  Google Scholar 

  58. Wen, X.J., Liu, Y., Zhou, N.R.: Realizable quantum broadcasting multi-signature scheme. Int. J. Mod. Phys. B 22, 4251 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Zeng, G.H., Zhang, W.P.: Identity verification in quantum key distribution. Phys. Rev. A 61, 022303 (2000)

    Article  ADS  Google Scholar 

  60. Lee, H., Lim, J., Yang, H.: Quantum direct communication with authentication. Phys. Rev. A 73, 042305 (2006)

    Article  ADS  Google Scholar 

  61. Zhang, Z.J., Liu, J., Wang, D., Shi, S.H.: Comment on Quantum direct communication with authentication. Phys. Rev. A 75, 026301 (2007)

    Article  ADS  Google Scholar 

  62. Liu, D., Pei, C.X., Quan, D.X., Zhao, N.: A new quantum secure direct communication scheme with authentication. Chin. Phys. Lett. 27, 050306 (2010)

    Article  ADS  Google Scholar 

  63. Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Cryptanalysis of quantum secure direct communication and authentication scheme via Bell states. Chin. Phys. Lett. 28, 020303 (2011)

    Article  ADS  Google Scholar 

  64. Lin, S, Huang, C, Liu, X F.: Multi-user quantum key distribution based on Bell states with mutual authentication. Phys. Scr. 87, 035008 (2013)

    Article  ADS  Google Scholar 

  65. Chang, Y., Zhang, S.B., Li, J., Yan, L.L.: Robust EPR-pairs-based quantum secure communication with authentication resisting collective noise. Sci. China Ser. G-Phys. Mech. Astron 57, 1907–1912 (2014)

    Article  ADS  Google Scholar 

  66. Yu, K.F., Yang, C.W., Liao, C.H., Hwang, T.: Authenticated semi-quantum key distribution protocol using Bell states. Quantum Inf. Process 13, 1457–1465 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  67. Ye, T.Y.: Fault-tolerant authenticated quantum dialogue using logic Bell states. Quant. Inf. Process 14, 3499–3514 (2015)

    Article  ADS  MATH  Google Scholar 

  68. Shih, H., Lee, K., Hwang, T.: New efficient three-party quantum key distribution protocols. IEEE J. Sel. Top. Quant. Electron 15, 1602–1606 (2009)

    Article  Google Scholar 

  69. Lin, S., Wen, Q.Y., Qin, S.J., et al.: Multiparty quantum secret sharing with collective eavesdropping-check. Opt. Commun 282, 4455–4459 (2009)

    Article  ADS  Google Scholar 

  70. Gao, G.: Cryptanalysis of multiparty quantum secret sharing with collective eavesdropping-check. Opt. Commun 283, 2997–3000 (2010)

    Article  ADS  Google Scholar 

  71. Liu, B., Gao, F., Wen, Q.Y.: Eavesdropping and improvement to multiparty quantum secret sharing with collective eavesdropping-check. Int. J Theor. Phys 51, 1211–1223 (2012)

    Article  MATH  Google Scholar 

  72. Huang, W., Wen, Q.Y., Liu, B., Gao, F.: Multi-user quantum key distribution with collective eavesdropping detection over collective-noise channels. Chin. Phys. B. 24, 070308 (2015)

    Article  ADS  Google Scholar 

  73. Liu, B., Gao, F., Wen, Q.Y.: Single-photon multiparty quantum cryptographic protocols with collective detection. IEEE J Quant. Electron. 47, 1383–390 (2011)

    Article  ADS  Google Scholar 

  74. Huang, W., Su, Q., Li, Y.B., Sun, Y.: Fault-tolerant quantum cryptographic protocols with collective detection over the collective amplitude damping channel. Phys. Scr. 89, 075102 (2014)

    Article  ADS  Google Scholar 

  75. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys 24, 145–195 (2002)

    Article  ADS  Google Scholar 

  76. Deutsch, D., Ekert, A., Jozsa, R., Macchiavello, C., Popescu, S., Sanpera, A.: Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett 77, 2818 (1996)

    Article  ADS  Google Scholar 

  77. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)

    Article  ADS  Google Scholar 

  78. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351, 23 (2006)

    Article  ADS  MATH  Google Scholar 

  79. Wang, G.M., Ying, M.S.: Unambiguous discrimination among quantum operations. Phys. ReV. A 73, 042301 (2006)

    Article  ADS  Google Scholar 

  80. D’Ariano, G.M., Presti, P.L., Paris, M. G A.: Using entanglement improves the precision of quantum measurements. Phys. Rev. Lett 87, 270404 (2001)

    Article  Google Scholar 

  81. Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 357, 101–103 (2006)

    Article  ADS  MATH  Google Scholar 

  82. Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Dense-coding attack on three-Party quantum key distribution protocols. IEEE J Quant. Electron 47, 630–635 (2011)

    Article  ADS  Google Scholar 

  83. Gao, F., Wen, Q.Y., Zhu, F.C.: Comment on: Quantum exam. Phys. Lett. A 360, 748 (2007)

    Article  ADS  Google Scholar 

  84. Zurek, W.H.: Decoherence and the transition from quantum to classical. Phys. Today 44, 36 (1991)

    Article  Google Scholar 

  85. Cabello, A: Six-qubit permutation-based decoherence-free orthogonal basis. Phys. Rev. A 75, 020301 (2007)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by NSFC (Grant Nos. 61501414, 61309029, 11504024, 61502041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, W., Xu, BJ., Duan, JT. et al. Authenticated Quantum Key Distribution with Collective Detection using Single Photons. Int J Theor Phys 55, 4238–4256 (2016). https://doi.org/10.1007/s10773-016-3049-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3049-0

Keywords

Navigation