Skip to main content
Log in

Relativistic Two-Boson System in Presence of Electromagnetic Plane Wave

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The relativistic two-body problem is considered for spinless particles subject to an external electromagnetic field. When this field is made of the monochromatic superposition of two counter-propagating plane waves (and provided the mutual interaction between particles is known), it is possible to write down explicitly a pair of coupled wave equations (corresponding to a pair of mass-shell constraints) which takes into account also the field contribution. These equations are manifestly covariant; constants of the motion are exhibited, so one ends up with a reduced problem involving five degrees of freedom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. But some situations of physical interest are not included in this case: for instance when the external field is a single monochromatic plane wave, it turns out that the wave vector is a direction of strong translation invariance; but it is a null vector, so in this case E L admits no orthonormal frame.

  2. In contrast eq. (8) of that reference holds only if P L is timelike, which is not the case eventually considered in the present paper.

  3. In contrast G fails to be invariant by rotation in \(\mathcal {E}_{12}\), as can be seen by a direct computation.

  4. Space ⊕ three-dimensional hyperbolic, not to be confused with the usual time ⊕ space decomposition.

  5. The eigenvalue of −N appears denoted as b 2 in the work of Todorov [1821]; divided by the reduced mass it is proportional to the leading term in the development of the mass defect M−(m 1 + m 2), insofar as an isolated system is concerned.

References

  1. Marzlin, K-P., Audretsch, J.: Phys. Rev. A 53, 1004 (1996)

    Article  ADS  Google Scholar 

  2. Bordé, Ch. J. In: Arecchi, F.T., Strumia, F., Walther, H (eds.) Advances in Laser Spectroscopy. Plenum Publishing Corp (1983)

  3. Ishikawa, J., Riehle, F., Helmcke, J., Bordé, Ch J.: Phys. Rev. A 49, 4794–4825 (1994)

    Article  ADS  Google Scholar 

  4. Ruf, M., Mocken, G., Mueller, C., Hatsagortsyan, K., Keitel, Ch.: Phys. Rev. Lett. 102, 080402 (2009)

    Article  ADS  Google Scholar 

  5. Heinzl, Th., Ilderton, A., Marklund, M.: Phys. Lett. B 692, 250–256 (2010)

    Article  ADS  Google Scholar 

  6. An introductive (non-exhaustive) account of modern relativistic dynamics is available in Relativistic Action-at-a-distance, Classical and quantum aspects, Lecture Notes in Phys. 162, J. Llosa Editor, Springer Verlag (1982) and references therein

  7. Droz-Vincent, Ph.: Reports Math. Phys 8, 79 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  8. Droz-Vincent, Ph.: Phys. Rev. D 19, 702 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  9. Bel, L. In: Cahen, M., Flato, M. (eds.) Differential Geometry and Relativity, p 197. Reidel, Dordrecht (1976)

  10. Bel, L.: Phys. Rev. D 28, 1308 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  11. Leutwyler, H., Stern, J.: Ann. of Phys. (N-Y) 112, 94 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  12. Leutwyler, H., Stern, J. Phys. Lett. B 73, 75 (1978)

    Article  ADS  Google Scholar 

  13. Crater, H.W., Van Alstine, P.: Phys. Lett. B 100, 166 (1981)

    Article  ADS  Google Scholar 

  14. Todorov, I.T.: JINR Report E2-10125. unpublished (1976)

  15. Molotkov, V.V., Todorov, I.T.: Commun. Math. Phys 79, 111 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  16. Todorov, I.T.: Contribution to reference [6]

  17. Popov, V.S.: Phys. Lett. A 298, 83 (2002)

    Article  ADS  Google Scholar 

  18. Todorov, I.T.: Phys. Rev. D 3, 2351 (1971)

    Article  ADS  Google Scholar 

  19. Todorov, I.T. In: Zichichi, A. (ed.) Properties of Fundamental Interactions, vol. 9, part C, p 951. editrice Compositori, Bologna (1973)

  20. Rizov, V. A., Todorov, I.T.: Sov. J. Part. Nucl 6, 269 (1975)

    MathSciNet  Google Scholar 

  21. Rizov, V. A., Todorov, I.T., Aneva, B. L.: Nucl. Phys. B 98, 447 (1975)

    Article  ADS  Google Scholar 

  22. Sazdjian, H.: Phys. Lett. B 156, 381 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  23. Sazdjian, H.: J. Math. Phys 28, 2618 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  24. Crater, H.W., Becker, R.L., Wong, C.Y., Van Alstine, P.: Phys. Rev. D 46, 5117–5153 (1992)

    Article  ADS  Google Scholar 

  25. Jallouli, Sazdjian, H.: Ann. Phys. (N-Y) 253, 376–426 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  26. Bijtebier, J.: J. Broekaert Nuovo Cim A 105, 351 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  27. Sokolov, S.N.: Theor. Math. Phys 36, 193 (1978)

    Article  Google Scholar 

  28. Sokolov, S.N.: Theor. Math. Phys. 37, 1029 (1979)

    Article  Google Scholar 

  29. Droz-Vincent, Ph.: Int. J. Theor. Phys 48, 2177–2189 (2009)

    Article  MathSciNet  Google Scholar 

  30. Bijtebier, J.: Nuovo Cim. A 102, 1285 (1989)

    Article  Google Scholar 

  31. Droz-Vincent, Ph.: Nuovo Cimento A 105, 1103–1126 (1992). There are several misprints in this paper: in p.1107 one should read condition (2.15) instead of condition (3.15). In Appendices B and C: Z was skipped from the r.h.s. of formula B.5. One should read \( K = \overline {H} +G\) and \(\overline {H}_{1} + \overline {H}_{2} = {P^{2} \over 4} + y^{2}\)

    Article  ADS  Google Scholar 

  32. Droz-Vincent, Ph.: Few-Body Syst. 14, 97–115 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  33. Droz-Vincent, Ph.: Two-body relativistic system in external field. In: Colomo, F., Lusanna, L., Marmo, G. (eds.) Constraint Theory and Quantization Methods. World Scientific, Montepulciano (1994)

  34. Currie, D.G.: J. Math. Phys. 4, 1470 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  35. Currie, D.G: Phys. Rev. 142, 817 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  36. Currie, D.G., Jordan, T.F., Sudarshan, E.C.G.: Rev. Mod. Phys. 35, 350 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  37. Droz-Vincent, Ph.: Int. J. Theor. Phys 39, 389–403 (2000)

    Article  Google Scholar 

  38. Volkov, D.M.: Zeits. Phys 94, 250 (1935)

    Article  ADS  Google Scholar 

  39. Brown, L S, Kibble, T W B: Phys. Rev 133A, 705 (1964)

    Article  ADS  Google Scholar 

  40. Bergou, J., Varró, S.: J. Phys. A: Math. Gen 13, 2823–2837 (1980)

    Article  ADS  Google Scholar 

  41. Droz-Vincent, Ph.: Phys. Rev. A 52, 1837–1844 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ph. Droz-Vincent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Droz-Vincent, P. Relativistic Two-Boson System in Presence of Electromagnetic Plane Wave. Int J Theor Phys 55, 4124–4141 (2016). https://doi.org/10.1007/s10773-016-3040-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3040-9

Keywords

Navigation