Skip to main content
Log in

One-Dimensional Three-State Quantum Walk with Single-Point Phase Defects

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, we study a three-state quantum walk with a phase defect at a designated position. The coin operator is a parametrization of the eigenvectors of the Grover matrix. We numerically investigate the properties of the proposed model via the position probability distribution, the position standard deviation, and the time-averaged probability at the designated position. It is shown that the localization effect can be governed by the phase defect’s position and strength, coin parameter and initial state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Dyer, M., Frieze, A., Kannan, R.: A random polynomial-time algorithm for approximating the volume of convex bodies. J. ACM 38, 1–17 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press (1995)

  3. Jerrum, M., Sinclair, A., Vigoda, E.: A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries. J. ACM 51, 671–697 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48, 1687 (1993)

    Article  ADS  Google Scholar 

  5. Meyer, D.A.: From quantum cellular automata to quantum lattice gases. J. Stat. Phys 85, 551–574 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A 58, 915 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  7. Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional quantum walks. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, STOC ’01, pp. 37–49 (2001)

  8. Childs, A.M., Farhi, E., Gutmann, S.: An example of the difference between quantum and classical random walks. Quantum Inf. Process 1, 3543 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Salimi, S.: Quantum central limit theorem for continuous-time quantum walks on odd graphs in quantum probability theory. Int. J. Theor. Phys 47(32), 3298–3309 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, D., Mc Gettrick, M., Zhang, K, Zhang, W.: Quantum walks on two kinds of two-dimensional models. Int. J. Theor. Phys 54(8), 2771–2783 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Christandl, M., Datta, N., Ekert, A., Landahl, A.J.: Perfect state transfer in quantum spin networks. Phys. Rev. Lett. 92, 187902 (2004)

    Article  ADS  Google Scholar 

  12. Kurzyński, P., Wójcik, A.: Discrete-time quantum walk approach to state transfer. Phys. Rev. A 83, 062315 (2011)

    Article  ADS  Google Scholar 

  13. Gamble, J.K., Friesen, M., Zhou, D., Joynt, R., Coppersmith, S.N.: Two-particle quantum walks applied to the graph isomorphism problem. Phys. Rev. A 81, 052313 (2010)

    Article  ADS  Google Scholar 

  14. Berry, S.D., Wang, J.B.: Two-particle quantum walks: Entanglement and graph isomorphism testing. Phys. Rev. A 83, 042317 (2011)

    Article  ADS  Google Scholar 

  15. Rudinger, K., Gamble, J.K., Wellons, M., Bach, E., Friesen, M., Joynt, R., Coppersmith, S.N.: Noninteracting multiparticle quantum random walks applied to the graph isomorphism problem for strongly regular graphs. Phys. Rev. A 86, 022334 (2012)

    Article  ADS  Google Scholar 

  16. Li, D., Zhang, J., Guo, F. Z., Huang, W., Wen, Q.Y., Chen, H.: Discrete-time interacting quantum walks and quantum Hash schemes. Quantum Inf. Process 12, 1501 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Li, D., Zhang, J., Ma, X. W., Zhang, W.W., Wen, Q.Y.: Analysis of the two-particle controlled interacting quantum walks. Quantum Inf. Process 12, 2167 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Yang, Y.G., Pan, Q.X., Sun, S.J., Xu, P.: Novel image encryption based on quantum walks. Sci. Rep 5, 7784 (2015)

    Article  ADS  Google Scholar 

  19. Brun, T.A., Carteret, H. A.: Quantum walks driven by many coins. Phys. Rev. A 67, 052317 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  20. Xue, P., Sanders, B.C.: Two quantum walkers sharing coins. Phys. Rev. A 85, 022307 (2012)

    Article  ADS  Google Scholar 

  21. Banuls, M.C., Navarrete, C., Pérez, A., Roldán, E., Soriano, J.C.: Quantum walk with a time-dependent coin. Phys. Rev. A 73, 062304 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  22. Inui, N., Konno, N., Segawa, E.: One-dimensional three-state quantum walk. Phys. Rev. A 72, 056112 (2005)

    Article  ADS  Google Scholar 

  23. Štefaňák, M., Bezděková, I., Jex, I.: Continuous deformations of the Grover walk preserving localization. Eur. Phys. J. D 66, 142 (2012)

    Article  Google Scholar 

  24. Štefaňák, M., Bezděková, I., Jex, I., Barnett, S.M.: Stability of point spectrum for three-state quantum walks on a line. Quantum Inf. Comput 14, 1213 (2014)

    MathSciNet  Google Scholar 

  25. Machida, T.: Limit theorems of a 3-state quantum walk and its application for discrete uniform measures. Quantum Inf. Comput 15, 0406 (2015)

    MathSciNet  Google Scholar 

  26. Falkner, S., Boettcher, S: Weak limit of the three-state quantum walk on the line. Phys. Rev. A 90, 012307 (2014)

    Article  ADS  Google Scholar 

  27. Štefaňák, M., Bezděková, I., Jex, I.: Limit distributions of three-state quantum walks: The role of coin eigenstates. Phys. Rev. A 90, 012324 (2014)

    Article  Google Scholar 

  28. Wang, C., Lu, X., Wang, W.: The stationary measure of a space-inhomogeneous three-state quantum walk on the line. Quantum Inf. Process 14, 867 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Kollár, B., Štefaňák, M., Kiss, T., Jex, I.: Recurrences in three-state quantum walks on a plane. Phys. Rev. A 82, 012303 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  30. Machida, T., Chandrashekar, V.M.: Localization and limit laws of a three-state alternate quantum walk on a two-dimensional lattice. Phys. Rev. A 92, 062307 (2015)

    Article  ADS  Google Scholar 

  31. Lyu, C., Yu, L., Wu, S.: Localization in quantum walks on a honeycomb network. Phys. Rev. A 92, 052305 (2015)

    Article  ADS  Google Scholar 

  32. Wǒjcik, A., Łuczak, T., Kurzyński, P., Grudka, A., Gdala, T., Bednarska-Bzdȩga, M.: Trapping a particle of a quantum walk on the line. Phys. Rev. A 85, 012329 (2012)

    Article  ADS  Google Scholar 

  33. Li, Z.J., Izaac, J.A., Wang, J.B.: Position-defect-induced reflection, trapping, transmission, and resonance in quantum walks. Phys. Rev. A 87, 012314 (2013)

    Article  ADS  Google Scholar 

  34. Izaac, J.A., Wang, J.B., Li, Z.J.: Continuous-time quantum walks with defects and disorder. Phys. Rev. A 88, 042334 (2013)

    Article  ADS  Google Scholar 

  35. Zhang, R., Xue, P., Twamley, J.: One-dimensional quantum walks with single-point phase defects. Phys. Rev. A 89, 042317 (2014)

    Article  ADS  Google Scholar 

  36. Zhang, R., Xue, P.: Two-dimensional quantum walk with position-dependent phase defects. Quantum Inf. Process 13, 1825 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Lam, H.T., Szeto, K.Y.: Ramsauer effect in one-dimensional quantum walk with multiple defects. Phys. Rev. A 92, 012323 (2015)

    Article  ADS  Google Scholar 

  38. Li, Z.J., Wang, J.B.: Single-point position and transition defects in continuous time quantum walks. Sci. Rep 5, 13585 (2015)

    Article  ADS  Google Scholar 

  39. Xue, P., Qin, H., Tang, B.: Trapping photons on the line: Controllable dynamics of a quantum walk. Sci. Rep 4, 04825 (2014)

    ADS  Google Scholar 

  40. Bezděková, I., Štefaňák, M., Jex, I.: Suitable bases for quantum walks with Wigner coins. Phys. Rev. A 92, 022347 (2015)

    Article  ADS  Google Scholar 

  41. Di Franco, C., Paternostro, M.: Localizationlike effect in two-dimensional alternate quantum walks with periodic coin operations. Phys. Rev. A 91, 012328 (2015)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 61202451), the Foundation of Fujian Education Bureau (Grant Nos. JA12062, JA11054), and a Program for Innovative Research Team in Science and Technology in Fujian Province University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, YZ., Guo, GD. & Lin, S. One-Dimensional Three-State Quantum Walk with Single-Point Phase Defects. Int J Theor Phys 55, 4060–4074 (2016). https://doi.org/10.1007/s10773-016-3034-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3034-7

Keywords

Navigation