Skip to main content
Log in

Dirac’s Equation in R-Minkowski Spacetime

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We recently constructed the R-Poincaré algebra from an appropriate deformed Poisson brackets which reproduce the Fock coordinate transformation. We showed then that the spacetime of this transformation is the de Sitter one. In this paper, we derive in the R-Minkowski spacetime the Dirac equation and show that this is none other than the Dirac equation in the de Sitter spacetime given by its conformally flat metric. Furthermore, we propose a new approach for solving Dirac’s equation in the de Sitter spacetime using the Schrödinger picture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amelino Camelia, G.: Nature 418, 34 (2002)

    Article  ADS  Google Scholar 

  2. Amelino Camelia, G.: Phys. Lett B510, 255 (2001)

    Article  ADS  Google Scholar 

  3. Magueijo, J., Smolin, L.: Phys. Rev. Lett 88, 190403 (2002)

    Article  ADS  Google Scholar 

  4. Magueijo, J., Smolin, L.: Phys. Rev D67, 044017 (2003)

    ADS  MathSciNet  Google Scholar 

  5. Fock, V.: The Theory of Space, Time and Gravitation. Pergamon Press, Oxford (1964)

    MATH  Google Scholar 

  6. Ghosh, S., Pal, P.: Phys. Rev D75, 105021 (2007)

    ADS  MathSciNet  Google Scholar 

  7. Bouda, A., Foughali, T.: Mod. Phys. Lett A27, 1250036 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  8. Foughali, T., Bouda, A.: Can. J. Phys 93, 734 (2015)

    Article  ADS  Google Scholar 

  9. Magpantay, J.A.: Phys. Rev D84, 024016 (2011)

    ADS  Google Scholar 

  10. Gosselin, P., Bérard, A., Mohrbach, H., Ghosh, S.: Phys. Lett B660, 267 (2008)

    Article  ADS  Google Scholar 

  11. Belhadi, Z., Menas, F., Bérard, A., Gosselin, P., Mohrbach, H.: Int. J. Mod. Phys A27, 1250031 (2012)

    Article  ADS  Google Scholar 

  12. Harikumar, E., Sivakumar, M., Srinivas, N.: Mod. Phys. Lett A26, 1103 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  13. Balasubramanian, V., de Boer, J., Minic, D.: Phys.Rev. D65, 123508 (2002)

    ADS  MathSciNet  Google Scholar 

  14. Spradlin, M., Strominger, A., Volovich, A.: arXiv:hep-th/0110007

  15. Cotăescu, I.I.: Mod Phys. Lett A22, 2965 (2007)

    Article  ADS  Google Scholar 

  16. Chapman, T., Cerceau, O.: Am. J. Phys 52, 994 (1984)

    Article  ADS  Google Scholar 

  17. Alsing, P.M., Evans, J.C., Nandi, K.K.: Gen. Rel. Grav 33, 1459 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  18. Shishkin, G.V.: Class. Quant. Grav. 8, 175 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  19. Cotăescu, I.I., Racoceanu, R., Crucean, C.: Mod Phys. Lett A21, 1313 (2006)

    Article  ADS  Google Scholar 

  20. Greiner, W.: Relativistic Quantum Mechanics - Wave Equations, 3rd edition. Springer (2000)

  21. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover (1964)

  22. Gradshteyn, I.S, Ryzhik, I.M.: Tables of Integrals, Series, and Products, Corrected and Enlarged Edition. Academic Press, Inc, New York (1980)

    MATH  Google Scholar 

  23. Wachter, A.: Relativistic Quantum Mechanics. Springer (2011)

  24. Berestetski, V., Lifchitz, E., Pitayevski, L.: Théorie Quantique Relativiste. Mir, Moscow (1972)

  25. Birrel, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press (1982)

  26. Parker, L., Toms, D.J.: Quantum Field Theory in Curved Spacetime. Cambridge University Press, Quantized Fields and Gravity (2009)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bouda.

Appendices

Appendix A: Squared Dirac Equation in Curved Spacetime

In a curved spacetime, Dirac’s equation is given by [25]

$$ \left( i \, \gamma^{\mu} \, D_{\mu} - \frac{m c}{\hbar} \right) \psi(x) = 0, $$
(86)

where D μ is the spinor covariant derivative,

$$ D_{\mu}\psi=(\partial_{\mu}+{\Omega}_{\mu})\psi, $$
(87)

and

$$ {\Omega}_{\mu}(x) \equiv - \frac{i}{4}\,\omega_{ab\mu}(x)\,\sigma^{ab} = \frac{1}{8}\,\omega_{ab\mu}(x) \,[\,\gamma^{a},\,\gamma^{b}\,] $$
(88)
$$ \omega^{a}_{\hspace{.5em}b\mu} = e_{\nu}^{\hspace{.5em}a}\, \left( \partial_{\mu}\,e^{\hspace{.5em}\nu}_{b} + \, e_{b}^{\hspace{.5em}\sigma} \, {\Gamma}^{\nu}_{\sigma\mu} \right), $$
(89)

are respectively the Fock-Ivanenko coefficients [26] and the spin connection, \({\Gamma }^{\nu }_{\sigma \mu }\) being the Christoffel symbols. It follows that the square of Dirac’s equation [16]

$$ \left( i\gamma^{\mu}D_{\mu} + m c/\hbar \right)\,\left( i\gamma^{\nu}D_{\nu} - m c/\hbar \right)\psi =0\, $$
(90)

can be rewritten in the form

$$ \left[g^{\mu\nu}D_{\mu}D_{\nu} -\frac{1}{2} \sigma^{\mu\nu} K_{\mu\nu} + (m c/\hbar)^{2} \right]\psi=0, $$
(91)

where

$$ K_{\mu\nu} \equiv \frac{1}{2}(D_{\nu}\,D_{\mu} -D_{\mu}\,D_{\nu}) =\partial_{\nu}{\Omega}_{\mu} - \partial_{\mu}{\Omega}_{\nu} + [{\Omega}_{\nu},{\Omega}_{\mu}] $$
(92)

is the spin curvature. Equation (91) is the generally covariant extension of the Pauli-Schrödinger equation that describes spin 1/2 particles in a gravitational field [16, 17]. The first term contains, in addition to the Klein-Gordon operator, terms involving the Fock-Ivanenko coefficients Ω μ

$$\begin{array}{@{}rcl@{}} g^{\mu\nu}D_{\mu}D_{\nu}\psi&=&(g^{\mu\nu}\partial_{\mu}\partial_{\nu} - g^{\mu\nu}{\Gamma}^{\lambda}_{\mu\nu}\partial_{\lambda})\psi +g^{\mu\nu} \left[ (D_{\mu}{\Omega}_{\nu}) +2 {\Omega}_{\nu}\partial_{\mu} \right]\psi \\ &=&\Box_{KG}\psi+g^{\mu\nu} \left[ (D_{\mu}{\Omega}_{\nu}) +2 {\Omega}_{\nu}\partial_{\mu} \right]\psi. \end{array} $$
(93)

In our case, the R-Minkowski space corresponds to the de Sitter spacetime given by the metric

$$ ds^{2}=\displaystyle\frac{1}{(1-x^{0}/R)^{2}} \left[(dx^{0})^{2}-d\vec{x}^{2}\right]=\displaystyle\frac{1}{\xi^{2}}\left[(dx^{0})^{2}-d \vec{x}^{2}\right]. $$
(94)

In the chart with x 0∈(−,0],the tetrad field is given by \(e_{\ a}^{\mu } =\xi \,\delta _{\ a}^{\mu } \) and the spin connection by \(\omega _{\mu ab}=\displaystyle {{(R\xi )^{-1}} }\left [ \eta _{\mu b}{\delta _{a}^{0}}-\eta _{\mu a}{\delta _{b}^{0}}\right ] \). Then, the covariant derivative reads

$$ D_{\mu} =\partial_{\mu} +\displaystyle{\frac{1}{4R\xi} }\eta_{\mu a}\left[ \gamma^{0},\gamma^{a}\right], $$
(95)

and a simple calculus gives for the sum of the terms involving the Fock-Ivanenko coefficients Ω

$$\begin{array}{@{}rcl@{}} g^{\mu\nu} \left[ (D_{\mu}{\Omega}_{\nu}) + 2{\Omega}_{\nu}\partial_{\mu} \right] &=& g^{\mu\nu} \left[ (\partial_{\mu}{\Omega}_{\nu}) - {\Gamma}^{\sigma}_{\nu\mu}{\Omega}_{\sigma}+{\Omega}_{\mu}{\Omega}_{\nu} +2{\Omega}_{\nu}\partial_{\mu} \right] \\ &=&-\frac{1}{R}\xi\gamma^{0}\gamma^{i}\partial_{i}- \frac{3}{4R^{2}}. \end{array} $$
(96)

On the other hand, it is known that

$$ - \frac{1}{2} \sigma^{\mu\nu} K_{\mu\nu}= \frac{\mathcal R}{4}, $$
(97)

where \(\mathcal {R}\) is the Ricci scalar and that in the de Sitter space, we have \(\mathcal {R}=12/R^{2}\). Taking into account (93), (96) and (97), relation (91) can be rewritten as

$$ \left[\Box_{KG} -\frac{1}{R}\xi\gamma^{0}\gamma^{i}\partial_{i} + \frac{9}{4R^{2}} + (m c/\hbar)^{2} \right]\psi=0. $$
(98)

Comparing to (29), it is clear that expressions of terms which make the square of Dirac’s operator different from the one of Klein-Gordon are established.

Appendix B: Remark on the Integration Measure

In the natural representation (NP), the normalization of the wave function, expressed through the canonical variable X μ = x μ/ξ, is given by the usual condition in special relativity

$$\begin{array}{@{}rcl@{}} <{\Psi}_{NP},{\Psi}_{NP}>&=&{\int}_{\Sigma} d^{3}X \bar{\Psi}_{NP}(X)\gamma^{0} {\Psi}_{NP}(X) \\ &=&{\int}_{\Sigma} d^{3}X {\Psi}^{\dagger}_{NP}(X){\Psi}_{NP}(X) = 1, \end{array} $$
(99)

where the integration must be done over the spacelike hypersurface Σ, determined by X 0 = c s t meaning that ξ = c s t. So, the spacelike hypersurface at a constant time in the R-Minkowski spacetime is given by

$$ d^{3}X|_{T=cst}=dX\wedge dY\wedge dZ\,|_{t=cst}=d^{3}x \xi^{-3}. $$
(100)

Thus, the normalization condition in the R-Minkowski spacetime is given by

$$ <{\Psi}_{NP},{\Psi}_{NP}>={\int}_{\Sigma} d^{3}x \xi^{-3}{\Psi}^{\dagger}_{NP}(x){\Psi}_{NP}(x)=1, $$
(101)

where d 3 x = r 2 d r dΩ. Taking into account relation (33), one can check that in the R-Minkowski spacetime the wave function, Ψ≡Ψ S P , in the Schrödinger representation, is normalized with respect to the usual condition of special relativity

$$\begin{array}{@{}rcl@{}} <{\Psi}_{SP},{\Psi}_{SP}>& = &<{\Psi}_{NP},{\Psi}_{NP}> \\ & =& {\int}_{\Sigma} d^{3}x \xi^{-3}{\Psi}^{\dagger}_{NP}(x){\Psi}_{NP}(x) \\ & =& {\int}_{\Sigma} d^{3}x {\Psi}^{\dagger}_{SP}(x){\Psi}_{SP}(x)=1. \end{array} $$
(102)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foughali, T., Bouda, A. Dirac’s Equation in R-Minkowski Spacetime. Int J Theor Phys 55, 2247–2258 (2016). https://doi.org/10.1007/s10773-015-2863-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2863-0

Keywords

Navigation