Skip to main content
Log in

QRDA: Quantum Representation of Digital Audio

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Multimedia refers to content that uses a combination of different content forms. It includes two main medias: image and audio. However, by contrast with the rapid development of quantum image processing, quantum audio almost never been studied. In order to change this status, a quantum representation of digital audio (QRDA) is proposed in this paper to present quantum audio. QRDA uses two entangled qubit sequences to store the audio amplitude and time information. The two qubit sequences are both in basis state: |0〉 and |1〉. The QRDA audio preparation from initial state |0〉 is given to store an audio in quantum computers. Then some exemplary quantum audio processing operations are performed to indicate QRDA’s usability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Feynman, R.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  2. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceeding of 35th Annual Symposium Foundations of Computer Science, pp 124–134. IEEE Computer Soc. Press, Los Almitos (1994)

  3. Grover, L.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on the Theory of Computing, pp. 212–219 (1996)

  4. Venegas-Andraca, S.E., Bose, S.: Storing, processing and retrieving an image using quan- tum mechanics. In: Proceedings of the SPIE Conference on Quantum Information and Computation, pp. 137–147 (2003)

  5. Latorre, J.I.: Image compression and entanglement. arXiv:quantph/0510031 (2005)

  6. Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quantum Inf. Process. 9(1), 1–11 (2010)

    Article  MathSciNet  Google Scholar 

  7. Le, P.Q., Dong, F.Y., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Sun, B., Iliyasu, A.M., Yan, F., Dong, F.Y., Hirota, K.: An RGB multi-channel representation for images on quantum computers. J. Adv. Comput. Intell. Intell. Inform. 17(3), 404–417 (2013)

    Google Scholar 

  9. Zhang, Y., Lu, K., Gao, Y.H., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(12), 2833–2860 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Zhang, Y., Lu, K., Gao, Y.H., Xu, K.: A novel quantum representation for log-polar images. Quantum Inf. Process. 12(9), 3103–3126 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Li, H.S., Zhu, Q., Song, L., et al.: Image storage, retrieval, compression and segmentation in a quantum system. Quantum Inf. Process. 12(9), 2269–2290 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Li, H.S., Zhu, Q.X., Zhou, R.G., Lan, S., Yang, X.J.: Multi-dimensional color image storage and retrieval for a normal arbitrary quantum superposition state. Quantum Inf. Process. 13(4), 991–1011 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Jiang, N., Mu, Y., Wang, J.: Quantum image scaling up based on nearest neighbor interpolation with integer scaling ratio. Quantum Inf. Process., under review (2014)

  14. Le, P.Q., Iliyasu, A.M., Dong, F.Y., Hirota, K.: Fast geometric transformation on quantum images. IAENG Int. J. Appl. Math. 40(3), 113–123 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Wang, J., Jiang, N., Wang, L.: Quantum image translation. Quantum Inf. Process., published online (2014)

  16. Jiang, N., Wang, L.: Quantum image scaling using nearest neighbor interpolation. Quantum Inf. Process., published online (2014)

  17. Jiang, N., Wu, W.Y., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling. Quantum Inf. Process. 13(5), 1223–1236 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Jiang, N., Wang, L.: Analysis and improvement of the quantum Arnold image scrambling. Quantum Inf. Process. 13(7), 1545–1551 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Jiang, N., Wang, L., Wu, W.Y.: Quantum Hilbert image scrambling. Int. J. Theor. Phys. 53(7), 2463–2484 (2014)

    Article  MATH  Google Scholar 

  20. Zhang, Y., Lu, K., Xu, K., Gao, Y.H., Wilson, R.: Local feature point extraction for quantum images. Quantum Inf. Process., published online (2014)

  21. Iliyasu, A.M., Le, P.Q., Dong, F., Hirota, K.: Watermarking and authentication of quantum images based on restricted geometric transformations. Inf. Sci. 186, 126–149 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhang, W.W., Gao, F., Liu, B., et al.: A watermark strategy for quantum images based on quantum Fourier transform. Quantum Inf. Process. 12(4), 793–803 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Zhang, W.W., Gao, F., Liu, B., et al.: A quantum watermark protocol. Int. J. Theor. Phys. 52, 504–513 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yang, Y.G., Jia, X., Xu, P., Tian, J.: Analysis and improvement of the watermark strategy for quantum images based on quantum Fourier transform. Quantum Inf. Process. 12(8), 2765–2769 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Song, X.H., Wang, S., Liu, S., Ahmed, A., Abd El-Latif, Niu, X.M.: A dynamic watermarking scheme for quantum images using quantum wavelet transform. Quantum Inf. Process. 12(12), 3689–3706 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Song, X.H., Wang, S., Liu, S., Ahmed, A., Abd El-Latif, Niu, X.M.: Dynamic watermarking scheme for quantum images based on Hadamard transform. Multimedia Syst., published online (2014)

  27. Jiang, N., Wang, L.: A quantum image information hiding algorithm based on Moiré pattern. Int. J. Theor. Phys., published online (2014)

  28. Wang, S., Song, X.H., Niu, X.M.: A novel encryption algorithm for quantum images based on quantum wavelet transform and diffusion. Intell. Data Anal. Appl. II (298), 243–250 (2014)

    Google Scholar 

  29. Hua, T., Chen, J., Pei, D., et al.: Quantum image encryption algorithm based on image correlation decomposition, Int. J. Theor. Phys., published online (2014)

  30. Zhou, R.-G., Wu, Q., Zhang, M.-Q., et al.: A quantum image encryption algorithm based on quantum image geometric transformations. Pattern Recogn. 321, 480–487 (2012)

    Article  Google Scholar 

  31. Zhou, R.-G., Wu, Q., Zhang, M.-Q.: Quantum image encryption and decryption algorithms based on quantum image geometric transformations. Int. J. Theor. Phys. 52, 1802–1817 (2013)

    Article  MathSciNet  Google Scholar 

  32. http://en.wikipedia.org/wiki/Digital_audio (2014)

  33. http://en.wikipedia.org/wiki/Audio_mixing_(recorded_music) (2014)

  34. Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54(1), 147–153 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  35. Chapin Cutler, C.: Differential quantization of communication signals. U.S. patent 2605361 (filed 1950, issued 1952)

  36. Nielson, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wang.

Additional information

This work is supported by the Fundamental Research Funds for the Central Universities No. 2015JBM027, and the State Scholarship Fund under Grants No. 201507095087.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J. QRDA: Quantum Representation of Digital Audio. Int J Theor Phys 55, 1622–1641 (2016). https://doi.org/10.1007/s10773-015-2800-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2800-2

Keywords

Navigation